Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, a :b:c:d=2:3:4:5
suy ra : a/2=b/3=c/4=d/5
tính dãy các tỉ số bằng nhau mà tính
b,\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
suy ra :\(\frac{a}{2}=\frac{2.b}{2.3}=\frac{3.c}{3.4}\)áp dung tính chất dãy tỉ số bằng nhau
c,a/2=b/3
=1/5.a/2=1/5.b/3=a/10=b/15
b/5=c/4
=1/3.b/5=1/3.c/4=b/15=c/12
vậy ta có: a/10=b/15=c/12
áp dụng t/c dãy tỉ số bằng nhau
mik chỉ hướng dẫn bn thôi
chúc bạn làm tốt (tích hộ mik nha)
a/10=b/15;b/15=c/12=>a/10=b/15=c/12
áp dụng t/chất dãy tỉ số bằng nhau ta có:
a/10=b/15=c/12=a-b+c/10-15+12=-49/7=-7
a/10=-7=>a=10.-7=-70
b/15=-7=>b=15.-7=-105
c/12=-7=>b=12.-7=-84
Vậy:a=-70;b=-105;c=-84
chúc bn học tốt
Ta có:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\) và \(a-b+c=-49\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\hept{\begin{cases}\frac{a}{10}=-7\Rightarrow a=-7.10=-70\\\frac{b}{15}=-7\Rightarrow b=-7.15=-105\\\frac{c}{12}=-7\Rightarrow c=-7.12=-84\end{cases}}\)
Vậy \(a=-70;b=-105;c=-84\)
\(\frac{a}{2}=\frac{b}{3},\frac{b}{5}=\frac{c}{4}=\frac{a}{10}=\frac{b}{15},\frac{b}{15}=\frac{c}{12}=\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{a-b+c}{7}=\frac{-49}{7}=-7\)
\(\Rightarrow\frac{a}{10}=-7\Rightarrow a=\left(-7\right).10=-70\)
\(\Rightarrow\frac{b}{15}=-7\Rightarrow b=\left(-7\right).15=-105\)
\(\Rightarrow\frac{c}{12}=-7\Rightarrow c=\left(-7\right).12=-84\)
Ta có a/2 = a/10; a/3 = b/15 ( nhân 2 phân số với 1/5 )
b/5 =b/15 ; c/4 = c/ 12 ( nhân 2 phân số với 1/3 )
Ta thấy có 2 lần b/15 vậy ta giảm đi còn :
a/10 = b/15 = c/12
Áp dụng tính chất của dãy tỉ số bằng nhau ta được :
a/10 = b/15 = c/12 = a-b+c / 10-15+12 = -49 / 7=-7
=> a /10 = -7 => a = -70
=> b/15 = -7 => b= -105
=> c/12 = -7 => c = -84
Chúc các bạn học tốt !
1/ Ta có \(\frac{a}{2}=\frac{b}{3}\rightarrow\frac{a}{10}=\frac{b}{15}\) (1)
\(\frac{b}{5}=\frac{c}{4}\rightarrow\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2) suy ra \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy TSBN
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{49}{7}=7\)
\(\Leftrightarrow\frac{a}{10}=7\rightarrow a=70\)
Tương tự với b và c
Vậy......
a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=3k-2\\c=4k+3\end{cases}}\)thay vào \(3a-2b+c=-46\)
\(\Rightarrow3\left(2k+1\right)-2\left(3k-2\right)+4k+3=-46\)
\(\Leftrightarrow6k+3-\left(6k-4\right)+4k+3=-46\)
\(\Leftrightarrow4k+10=-46\Rightarrow4k=-56\Rightarrow k=-14\)
\(\Rightarrow\hept{\begin{cases}a=2.\left(-14\right)+1=-27\\b=3.\left(-14\right)-2=-44\\c=4.\left(-14\right)+3=-53\end{cases}}\)
Vậy \(a=-27;b=-44;c=-53\)
b) \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\left(1\right)\)
\(\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
\(\Rightarrow\hept{\begin{cases}a=12.6=72\\b=12.15=180\\c=12.20=240\end{cases}}\)
Vậy \(a=72;b=180;c=240\)
a, \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}\)
\(\Rightarrow\frac{3a-3}{6}=\frac{2b+4}{6}=\frac{c-3}{4}=\frac{3a-3-2b-4+c-3}{6-6+4}=\frac{\left(3a-2b+c\right)-\left(3+4+3\right)}{4}=\frac{-46-10}{4}=-14\)
=> \(\hept{\begin{cases}\frac{a-1}{2}=-14\\\frac{b+2}{3}=-14\\\frac{c-3}{4}=-14\end{cases}}\Rightarrow\hept{\begin{cases}a=-27\\b=-44\\c=-53\end{cases}}\)
b) \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\\\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\end{cases}\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
=> a = 72, b=180, c=240
a)
Theo bài ra , ta có :
\(\frac{a}{2}=\frac{b}{3}\); \(\frac{b}{5}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
và a - b + c = -49
Áp dụng công thức tỉ lệ thức bằng nhau , ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)\(=\) \(\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
- \(\frac{a}{10}=-7\Rightarrow a=-7.10=-70\)
- \(\frac{b}{15}=-7\Rightarrow b=-7.15=-105\)
- \(\frac{c}{12}=-7\Rightarrow c=-7.12=-84\)
Vậy \(a=-70,b=-105,c=-84\)
Theo bài ra ta cs
\(+,\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)( 1 )
\(+,\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\Rightarrow\frac{a}{10}=-7;\frac{b}{15}=-7;\frac{c}{12}=-7\)
\(\Rightarrow a=-70;b=-105;c=-84\)
\(\text{Từ }\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
\(=\frac{a-b+c}{10-15+12}=-\frac{49}{7}=-7\)
\(\Rightarrow\hept{\begin{cases}a=(-7).10=-70\\b=\left(-7\right).15=-105\\c=\left(-7\right).12=-84\end{cases}}\)
Vậy .......
HỌC TỐT