Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) đk: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
pt (1) \(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\left(L\right),x=2\left(T\right)\)\(,x^2-2x+4=0\left(3\right)\)
pt(3) VÔ NGHIỆM vì \(\Delta'=1-4=-3< 0\)
Thay x=2 vào pt (2) ta được: \(\frac{1}{2}+\frac{1}{y-1}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow x=2\left(tm\right)\)
Vậy nghiệm của hệ pt là(x;y)=(2;2)
\(\frac{4}{x^2+7}=\frac{4}{x^2+1+y^2+1+z^2+1+x^2+1}\le\frac{4}{4x+2y+2z}=\frac{2}{2x+y+z}\)
đến đây tự làm nha
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé
a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)
Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương
\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)
Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)
Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7)
ĐKXĐ:...
\(\left\{{}\begin{matrix}\frac{1}{x-y+2}=a\\\frac{1}{x+y-1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7a-5b=\frac{9}{2}\\6a+4b=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-y+2}=1\\\frac{1}{x+y-1}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y+2=1\\x+y-1=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(\Rightarrow\frac{y}{x}=3\)
Nếu đây là HPT thì đặt \(x-y+2=a;x+y-1=b\), ta có:
\(\left\{{}\begin{matrix}\frac{7}{a}-\frac{5}{b}=\frac{9}{2}\\\frac{3}{a}+\frac{2}{b}=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}14b-10a=9ab\\3b+2a=4ab\end{matrix}\right.\)
\(\Leftrightarrow b=2a\) \(\Leftrightarrow x+y-1=2x-2y+4\)
\(\Leftrightarrow x=3y-5\) thay vào một trong hai PT đầu tiên để tìm x; y.