\(\frac{4}{x-4}-\frac{x}{x+4}+\frac{32}{16-x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

\(\frac{4}{x-4}-\frac{x}{x+4}+\frac{32}{16-x^2}.\)

\(=\frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{32}{\left(x-4\right)\left(x+4\right)}\)

\(=\frac{4x+16-x^2+4x-32}{\left(x-4\right)\left(x+4\right)}\)

\(=\frac{-x^2+8x-16}{\left(x-4\right)\left(x+4\right)}=\frac{-\left(x-4\right)^2}{\left(x-4\right)\left(x+4\right)}=\frac{-\left(x-4\right)}{x+4}\)

12 tháng 2 2020

\(ĐKXĐ:x\ne0\)

\(\frac{x+2}{x^2+2x+4}+\frac{x-2}{x^2-2x+4}=\frac{32}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\frac{x+2}{x^2+2x+4}+\frac{x-2}{x^2-2x+4}-\frac{32}{x\left(x^4+4x^2+16\right)}=0\)

\(\Leftrightarrow\frac{x\left(x+2\right)\left(x^2-2x+4\right)+x\left(x-2\right)\left(x^2+2x+4\right)-32}{x\left(x+2x+4\right)\left(x^2-2x+4\right)}=0\)

\(\Leftrightarrow x\left(x^3+8\right)+x\left(x^3-8\right)-32=0\)

\(\Leftrightarrow x\left(x^3+8+x^3-8\right)-32=0\)

\(\Leftrightarrow2x^4-32=0\)

\(\Leftrightarrow x^4=16\)

\(\Leftrightarrow x=\pm2\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-2\right\}\)

27 tháng 9 2016

a) \(\frac{36\left(x-2\right)}{32-16x}=\frac{36\left(x-2\right)}{16\left(2-x\right)}=-\frac{36\left(2-x\right)}{16\left(2-x\right)}=-\frac{36}{16}=-\frac{9}{4}\)

b) \(\frac{3x^2-12x+12}{x^4-8x}=\frac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}=\frac{3x-6}{x^3+2x^2+4x}\)

c) \(\frac{7x^2+14x+7}{3x^2+3x}=\frac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}=\frac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\frac{7\left(x+1\right)}{3x}=\frac{7x+7}{3x}\)

d) \(\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}=\frac{x^2\left(x^2-1\right)-4\left(x^2-1\right)}{x^2\left(x^2-1\right)-9\left(x^2-1\right)}=\frac{\left(x^2-4\right)\left(x^2-1\right)}{\left(x^2-9\right)\left(x^2-1\right)}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\)

e) \(\cdot\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}=\frac{x^2+2x+1}{x^2+1}\)

23 tháng 7 2017

a, \(\frac{x^{32}+x^{16}+1}{x^{16}+x^8+1}\)

\(=\frac{x^8+x^4+1}{x^4+x^2+1}\) Vậy phân thức \(a=\frac{x^8+x^4+1}{x^4+x^2+1}\)

P/s; Căn thức a, là phân số tối giản 

b, \(\frac{x^8+3x^4+4}{x^4+x^2+2}\)

\(=\frac{x^4+3x^2+2}{x^2+x^1+1}\) Vậy căn thức \(b=\frac{x^4+3x^2+2}{x^2+x^1+1}\)

P/s; Căn thức b, có thể rút gọn được cho 2 và 4

Em ko chắc đâu nhé *-*

24 tháng 6 2019

Ta có : Để M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\left(\frac{x^2+8x+16}{32}\right)=0\)

<=> M=\(\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)=0\)

<=>M=\(\left(\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\left(\frac{32}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\frac{x+4}{x-4}\)

b) Thay x=\(\frac{-3}{8}\) vào M:

M=\(\frac{x+4}{x-4}=\frac{\frac{-3}{8}+4}{\frac{-3}{8}-4}=\frac{-29}{35}\)

c)Hình như sai!

d)

Ta có:\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{2}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2+2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2+2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4+4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4+4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)

\(=\frac{8+8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)

\(=\frac{8+8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)

\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)

\(=\frac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\frac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)

\(=\frac{16+16}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)

\(=\frac{32}{1-x^{32}}\)