Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne0\)
\(\frac{x+2}{x^2+2x+4}+\frac{x-2}{x^2-2x+4}=\frac{32}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\frac{x+2}{x^2+2x+4}+\frac{x-2}{x^2-2x+4}-\frac{32}{x\left(x^4+4x^2+16\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)\left(x^2-2x+4\right)+x\left(x-2\right)\left(x^2+2x+4\right)-32}{x\left(x+2x+4\right)\left(x^2-2x+4\right)}=0\)
\(\Leftrightarrow x\left(x^3+8\right)+x\left(x^3-8\right)-32=0\)
\(\Leftrightarrow x\left(x^3+8+x^3-8\right)-32=0\)
\(\Leftrightarrow2x^4-32=0\)
\(\Leftrightarrow x^4=16\)
\(\Leftrightarrow x=\pm2\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2\right\}\)
a) \(\frac{x^2-2x+2}{x^2+x+1}-\frac{x^2}{x^2+x+1}=\frac{3}{\left(x^4+x^2+1\right)x}\)
\(\Leftrightarrow\frac{x^2-2x+2}{x^2-x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)-\frac{x^2}{x^2+x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)\(=\frac{3}{\left(x^4+x^2+1\right)x}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow x\left(x^2-2x+2\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)-x^3\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Rightarrow x=\frac{3}{2}\)
b) làm tương tự nhé
\(\frac{2x+1}{x^2-5x+4}+\frac{5}{x-1}=\frac{2}{x-4}\)ĐKXĐ : \(x\ne1;4\)
\(\Leftrightarrow\frac{2x+1}{\left(x-1\right)\left(x-4\right)}+\frac{5\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-4\right)}\)
\(\Leftrightarrow2x+1+5x-20=2x-2\)
\(\Leftrightarrow2x+5x-2x=-1+20-2\)
\(\Leftrightarrow5x=17\)
\(\Leftrightarrow x=\frac{17}{5}\)
KL : Nghiệm của PT là S={ 17/5 }
\(\frac{7}{8x}-\frac{x-5}{4x^2-8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) ĐKXĐ : \(x\ne0;2\)
\(\Leftrightarrow\frac{7}{8x}-\frac{x-5}{4x\left(x-2\right)}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\frac{7\left(x-2\right)}{8x\left(x-2\right)}-\frac{2\left(x-5\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)
\(\Leftrightarrow7x-14-2x+10=4x-4+x\)
\(\Leftrightarrow7x-2x-4x-x=14-10-4\)
\(\Leftrightarrow0x=0\)
=> PT vô số nghiệm
ĐK: \(x\ne0\)
\(\frac{\left(x+2\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\frac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\frac{\left(x^3+8\right)-\left(x^3-8\right)}{x^4+4x^2+16}=\frac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow16=\frac{6}{x}\)
\(\Rightarrow x=\frac{3}{8}\)