Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\left(\frac{19}{24}-\frac{7}{24}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)\)
\(A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}\)
\(A=\frac{1}{3}\)
\(B=\left(\frac{7}{12}-\frac{5}{12}\right)+\left(\frac{5}{6}+\frac{1}{4}-\frac{3}{7}\right)\)
\(B=\left(\frac{1}{6}+\frac{5}{6}\right)+\frac{1}{4}-\frac{3}{7}\)
\(B=\frac{5}{4}-\frac{3}{7}\)
\(B=\frac{23}{28}\)
b)
\(x=A-B\)
\(x=\frac{1}{3}-\frac{23}{28}\)
\(x=\frac{-41}{84}\)
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{2}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+\frac{10}{4}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{2}{8}+\frac{1}{9}\)
Tách 9=1+1+...+1 ( có 9 số 1)
\(\Rightarrow A=1+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{2}{8}+1\right)+\left(\frac{1}{9}+1\right)\)
\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{8}+\frac{10}{9}\)
\(A=10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(\Rightarrow A:B=\frac{10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\) ( vì \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\ne0\) )
Vậy \(A:B=10\)
Cho mình sửa lại đề câu 1b: \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{x}{7}-\frac{1}{2}=\frac{1}{y+1}\)
\(\frac{2x-7}{14}=\frac{1}{y+1}\)
\(TH1:\hept{\begin{cases}2x-7=7\\y+1=2\end{cases}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}}\)
\(TH2:\hept{\begin{cases}2x-7=-7\\y+1=-2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)
nhớ cho
\(\frac{329}{1051}=\frac{1}{3+\frac{1}{5+\frac{1}{a+\frac{1}{b}}}}\)
Ta có: \(\frac{329}{1051}=\frac{1}{\frac{1051}{329}}\rightarrow\frac{1}{3+\frac{1}{5+\frac{1}{a+\frac{1}{b}}}}=\frac{1}{\frac{1051}{329}}\rightarrow3+\frac{1}{3+\frac{1}{5+\frac{1}{a+\frac{1}{b}}}}=\frac{1051}{329}\)
mà \(\frac{1051}{329}=3+\frac{64}{329}=3+\frac{1}{\frac{329}{64}}\rightarrow\frac{1}{5+\frac{1}{a+\frac{1}{b}}}\rightarrow5+\frac{1}{a+\frac{1}{b}}=\frac{329}{64}\)
Tương tự: \(\frac{329}{64}=5+\frac{9}{64}=5+\frac{1}{\frac{64}{9}}\rightarrow\frac{1}{a+\frac{1}{b}}=\frac{1}{\frac{64}{9}}\rightarrow a+\frac{1}{b}=\frac{64}{9}\)
mà \(\frac{64}{9}=7+\frac{1}{9}\Leftrightarrow\frac{64}{9}=a+\frac{1}{b}\Rightarrow a=7,b=9\)
Vậy \(a=7,b=9\)
\(\frac{329}{1051}=\frac{1}{3+\frac{1}{5+\frac{1}{7+\frac{1}{9}}}}\)\(\Rightarrow a=7;b=9\)