Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,b, 2xy - x = y + 5
<=> 4xy - 2x = 2y + 10
<=> 2x(2y - 1) - (2y - 1) = 11
<=> (2x - 1)(2y - 1) = 11
Lập bảng ra làm nốt
\(1,c,\frac{1}{x}-3=-\frac{1}{y-2}\)
\(\Leftrightarrow y-2-3x\left(y-2\right)=-x\)
\(\Leftrightarrow y-2-3xy+6x+x=0\)
\(\Leftrightarrow-3xy+7x+y-2=0\)
\(\Leftrightarrow-x\left(3y-7\right)+y-2=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+3y-6=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+\left(3y-7\right)=-1\)
\(\Leftrightarrow\left(1-3x\right)\left(3y-7\right)=-1\)
Lập bảng làm nốt
1) Ta có: \(\frac{3x}{4}=\frac{2y}{3}=\frac{9z}{7}.\)
=> \(\frac{x}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{7}{9}}\)
=> \(\frac{x}{\frac{4}{3}}=\frac{2y}{3}=\frac{3z}{\frac{7}{3}}\) và \(x+2y-3z=18.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{4}{3}}=\frac{2y}{3}=\frac{3z}{\frac{7}{3}}=\frac{x+2y-3z}{\frac{4}{3}+3-\frac{7}{3}}=\frac{18}{2}=9.\)
\(\left\{{}\begin{matrix}\frac{x}{\frac{4}{3}}=9\Rightarrow x=9.\frac{4}{3}=12\\\frac{y}{\frac{3}{2}}=9\Rightarrow y=9.\frac{3}{2}=\frac{27}{2}\\\frac{z}{\frac{7}{9}}=9\Rightarrow z=9.\frac{7}{9}=7\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(12;\frac{27}{2};7\right).\)
Chúc bạn học tốt!
Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{2x^3}{16}-\frac{3x^2}{12}+\frac{xyz}{60}=-108\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}=\frac{2x^3-3x^2+xyz}{16-12+60}=-\frac{108}{64}=-\frac{27}{16}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-\frac{27}{16}\Rightarrow x=-\frac{27}{16}.2=-\frac{27}{8}\\\frac{y}{5}=-\frac{27}{16}\Rightarrow y=-\frac{27}{16}.5=-\frac{135}{16}\\\frac{z}{6}=-\frac{27}{16}\Rightarrow z=-\frac{27}{16}.6=-\frac{81}{8}\end{matrix}\right.\)
Vậy...
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
Ta có:
\(A=\frac{1-2x}{x+3}=\frac{1-2x-6+6}{x+3}=\frac{1-\left(2x+6\right)+6}{x+3}=\frac{\left(1+6\right)-\left(2x+6\right)}{x+3}=\frac{7-\left(2x+2\times3\right)}{x+3}=\frac{7-2\times\left(x+3\right)}{x+3}=\frac{7}{x+3}-\frac{2\times\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
Để \(A=\frac{1-2x}{x+3}\in Z\) \(\left(x\ne-3\right)\)
thì \(\frac{7}{x+3}\in Z\) \(\left(x\ne-3\right)\)
\(\Rightarrow x+3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng sau:
\(x+3\) | \(-7\) | \(-1\) | \(1\) | \(7\) |
\(x\) | \(-10\) | \(-4\) | \(-2\) | \(4\) |
mà \(x\in Z\) và \(x\ne-3\)
\(\Rightarrow x\in\left\{-10;-4;-2;4\right\}\)
Vậy \(x\in\left\{-10;-4;-2;4\right\}\) thì thỏa mãn đề bài.
b) \(\frac{x-1}{2}=\frac{2x-2}{4}\)
\(\frac{y-2}{3}=\frac{3y-6}{9}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z+3-2-6}{9}=\frac{50+3-2-6}{9}=\frac{45}{9}=5\)=>x-1=5.2=10
=>x=11
y-2=5.3=15
=>y=17
z-3=5.4=20
=>z=23
Vậy (x;y;z)=(11;17;23)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+x-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x+y+z khác 0).Do đó x+y+z = 0.5
Thay kq này vào bài ta được:
\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)
Tức là : \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{-2,5-z}{z}=2\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)
= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5
Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11
\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17
\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23
Vậy x = 11 ; y = 17 ; z = 23
a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)
Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
=> x = 1 hoặc -1
y = 2 hoặc -2
z = 3 hoặc -3