Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}.\)
\(=\frac{\frac{2+\sqrt{3}}{2}}{1+\sqrt{\frac{2+\sqrt{3}}{2}}}\)\(+\frac{\frac{2-\sqrt{3}}{2}}{1-\sqrt{\frac{2-\sqrt{3}}{2}}}\)
\(=\frac{\frac{4+2\sqrt{3}}{4}}{1+\sqrt{\frac{4+\sqrt{3}}{4}}}\)\(+\frac{\frac{4-2\sqrt{3}}{4}}{1-\sqrt{\frac{4-2\sqrt{3}}{4}}}\)
\(=\frac{\frac{3+2\sqrt{3}+1}{4}}{1+\sqrt{\frac{3+2\sqrt{3}+1}{4}}}\)\(+\frac{\frac{3-2\sqrt{3}+1}{4}}{1-\sqrt{\frac{3-2\sqrt{3}+1}{4}}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{1+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{1+\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{1+\frac{\sqrt{3}+1}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{1-\frac{\sqrt{3}-1}{2}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{2+\sqrt{3}}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{2-\sqrt{3}}{2}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{\left(\sqrt{3}+1\right)^2}{4}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{\left(\sqrt{3}-1\right)^2}{4}}\)
\(=1+1=2\)
\(A=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)
\(A=\frac{2\left(1+\frac{\sqrt{3}}{2}\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\left(1-\frac{\sqrt{3}}{2}\right)}{2-\sqrt{4-2\sqrt{3}}}\)
\(A=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-\sqrt{3}+1}\)
\(A=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(A=\frac{\left(3-\sqrt{3}\right)\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}\)
\(A=\frac{3+\sqrt{3}+3-\sqrt{3}}{6}\)
\(A=\frac{6}{6}=1\)
có sai đề hk z??/ bạn xem lại đáp án đi, mình làm ra kết quả khác ah
\(a,\frac{2}{3+2\sqrt{2}}-\frac{7}{1-2\sqrt{2}}+\frac{4}{\sqrt{5}-1}+\sqrt{8}-2\)
\(=\frac{2.\left(3-2\sqrt{2}\right)}{9-8}-\frac{7.\left(1+2\sqrt{2}\right)}{1-8}+\frac{4.\left(\sqrt{5}+1\right)}{5-1}+2\sqrt{2}-2\)
\(=6-4\sqrt{2}-\frac{7.\left(1+2\sqrt{2}\right)}{-7}+\frac{4.\left(\sqrt{5}+1\right)}{4}+2\sqrt{2}-2\)
\(=6-4\sqrt{2}+1+2\sqrt{2}+\sqrt{5}+1+2\sqrt{2}-2\)
\(=6+\sqrt{5}\)
\(b,\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{5}}\)
\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{5}}{4-5}\)
\(=\frac{1-\sqrt{2}}{-1}+\frac{\sqrt{3}-\sqrt{2}}{1}+\frac{\sqrt{4}-\sqrt{5}}{-1}\)
\(=-1+\sqrt{2}+\sqrt{3}-\sqrt{2}-2+\sqrt{5}\)
\(=-3+\sqrt{3}+\sqrt{5}\)
\(c,\sqrt{4-2\sqrt{3}}+2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{3}\)
\(=\sqrt{3}-1+2\sqrt{3}\)
\(=-1+3\sqrt{3}\)
\(d,A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}+\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{2}}+\frac{\sqrt{3}+1}{\sqrt{2}}\)
\(=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}\)
\(=\frac{2\sqrt{3}}{\sqrt{2}}\)
\(=\sqrt{6}\)
\(e,B=\sqrt{\frac{2}{2+\sqrt{3}}}\)
Ta có \(\frac{2}{2+\sqrt{3}}=\frac{2.\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}\)
Thay lại ta được \(\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
.... Đúng thì ủng hộ nha ....
Kết bạn với mình ... ;) ;)