Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\sqrt{2}\left(\dfrac{2+\sqrt{3}}{2+\sqrt{3}+1}+\dfrac{2-\sqrt{3}}{2-\sqrt{3}+1}\right)\)
\(=\sqrt{2}\left(\dfrac{2+\sqrt{3}}{3+\sqrt{3}}+\dfrac{2-\sqrt{3}}{3-\sqrt{3}}\right)\)
\(=\sqrt{2}\cdot\dfrac{6-2\sqrt{3}+3\sqrt{3}-3+6+2\sqrt{3}-3\sqrt{3}-3}{6}\)
\(=\dfrac{1}{3\sqrt{2}}\cdot\dfrac{6}{1}=\sqrt{2}\)
\(\sqrt{3}.\sqrt{\frac{1}{27}}.\sqrt{5}.\sqrt{20}=\sqrt{3.\frac{1}{27}}.\sqrt{5.20}=\sqrt{\frac{1}{9}}.\sqrt{100}=\frac{1}{3}.10=\frac{10}{3}\)
\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}.\)
\(=\frac{\frac{2+\sqrt{3}}{2}}{1+\sqrt{\frac{2+\sqrt{3}}{2}}}\)\(+\frac{\frac{2-\sqrt{3}}{2}}{1-\sqrt{\frac{2-\sqrt{3}}{2}}}\)
\(=\frac{\frac{4+2\sqrt{3}}{4}}{1+\sqrt{\frac{4+\sqrt{3}}{4}}}\)\(+\frac{\frac{4-2\sqrt{3}}{4}}{1-\sqrt{\frac{4-2\sqrt{3}}{4}}}\)
\(=\frac{\frac{3+2\sqrt{3}+1}{4}}{1+\sqrt{\frac{3+2\sqrt{3}+1}{4}}}\)\(+\frac{\frac{3-2\sqrt{3}+1}{4}}{1-\sqrt{\frac{3-2\sqrt{3}+1}{4}}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{1+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{1+\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{1+\frac{\sqrt{3}+1}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{1-\frac{\sqrt{3}-1}{2}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{2+\sqrt{3}}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{2-\sqrt{3}}{2}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{\left(\sqrt{3}+1\right)^2}{4}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{\left(\sqrt{3}-1\right)^2}{4}}\)
\(=1+1=2\)
\(A=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)
\(A=\frac{2\left(1+\frac{\sqrt{3}}{2}\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\left(1-\frac{\sqrt{3}}{2}\right)}{2-\sqrt{4-2\sqrt{3}}}\)
\(A=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-\sqrt{3}+1}\)
\(A=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(A=\frac{\left(3-\sqrt{3}\right)\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}\)
\(A=\frac{3+\sqrt{3}+3-\sqrt{3}}{6}\)
\(A=\frac{6}{6}=1\)