Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A= \(2^3.5^3-3.\left[639-8\left(7^8:7^6+1\right)\right]\)
= \(2^3.5^3-3.\left[639-8.50\right]\)
= \(2^3.5^3-3.\left[639-400\right]\)
= \(2^3.5^3-3.239\)
= \(10^3-717\)
= 283
b) \(-19^2-\left\{147-2\left[7^3+\left(93-126\right):\left(6-3^2\right)\right]\right\}\)
= \(-19^2-\left\{147-2\left[7^3+\left(-33\right):\left(-3\right)\right]\right\}\)
= \(-19^2-\left\{147-2\left[7^3+11\right]\right\}\)
\(=-19^2-\left\{147-2.354\right\}\)
\(=-19^2-\left\{-561\right\}\)
= 922
Chúc bạn học tốt
a) ko hiểu đề
b) \(3|x|-\frac{3}{5}-2|x|=\frac{5}{9}\)
\(\Leftrightarrow|x|-\frac{3}{5}=\frac{5}{9}\)
\(\Leftrightarrow|x|=\frac{52}{45}\)
\(\Leftrightarrow x=\pm\frac{52}{45}\)
a) \(\frac{17}{9}-\frac{17}{9}:\left(\frac{7}{3}+\frac{1}{2}\right)\)
= \(\frac{17}{9}-\frac{17}{9}:\frac{17}{6}\)
= \(\frac{17}{9}-\frac{2}{3}\)
= \(\frac{11}{9}\)
b) \(\frac{4}{3}.\frac{2}{5}-\frac{3}{4}.\frac{2}{5}\)
= \(\frac{2}{5}.\left(\frac{4}{3}-\frac{3}{4}\right)\)
= \(\frac{2}{5}.\frac{7}{12}\)
= \(\frac{7}{30}\)
Mình lười làm quá, hay mình nói kết quả cho bn thôi nha
c) -6
d) 3
e) 3
g) 12
h) \(\frac{23}{18}\)
i) \(\frac{-69}{20}\)
k) \(\frac{-1}{2}\)
l) \(\frac{49}{5}\)
a. \(25.5^3.\frac{1}{625}.5^2=5^2.5^3.\frac{1}{5^4}.5^2=\frac{5^7}{5^4}=5^3\)
b. \(4.32:\left(2^3.\frac{1}{16}\right)=2^2.2^5:2^3:\frac{1}{2^4}=\frac{2^4}{2^4}=1\)
c. \(5^2.3^5.\left(\frac{3}{5}\right)^2=5^2.3^5.3^2.\frac{1}{5^2}==\frac{5^2}{5^2}.3^7=3^7\)
d. \(\left(\frac{1}{7}\right)^2.\frac{1}{7}.49^2=\frac{1}{7^3}.7^4=\frac{7^4}{7^3}=7\)
\(\left(2,5x-3x\right);1\frac{2}{3}=\left(\frac{8}{5}-2x\right):\left(-\frac{8}{17}\right)\)
⇔\(\left(2,5-3x\right).\frac{3}{5}=\left(\frac{8}{5}+2x\right).\left(-\frac{17}{8}\right)\)
⇔\(\frac{3}{2}-\frac{9x}{5}=-\frac{17}{5}-\frac{17x}{4}\)
⇔\(\frac{3}{2}-\frac{9x}{5}+\frac{17}{5}+\frac{17}{5}=0\)
⇔\(\frac{30}{20}-\frac{36x}{20}+\frac{68}{20}+\frac{85x}{20}=0\)
⇔\(\frac{30-36x+68+85x}{20}=0\)
⇔\(\frac{98+49x}{20}=0\)
⇔\(\frac{49\left(2+x\right)}{20}=0\)
⇔\(2+x=0\)
⇔\(x=-2\)