\(2^3\).\(5^3-3\).{639-8(
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

a) A= \(2^3.5^3-3.\left[639-8\left(7^8:7^6+1\right)\right]\)

= \(2^3.5^3-3.\left[639-8.50\right]\)

= \(2^3.5^3-3.\left[639-400\right]\)

= \(2^3.5^3-3.239\)

= \(10^3-717\)

= 283

b) \(-19^2-\left\{147-2\left[7^3+\left(93-126\right):\left(6-3^2\right)\right]\right\}\)

= \(-19^2-\left\{147-2\left[7^3+\left(-33\right):\left(-3\right)\right]\right\}\)

= \(-19^2-\left\{147-2\left[7^3+11\right]\right\}\)

\(=-19^2-\left\{147-2.354\right\}\)

\(=-19^2-\left\{-561\right\}\)

= 922

Chúc bạn học tốt

20 tháng 9 2017

Mấy bài dễ tự làm nhé:D

1)

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)

Ta có điều phải chứng minh

\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)

Ta có điều phải chứng minh

12 tháng 4 2020

Kết quả C. 3xyz2

12 tháng 4 2020

thanks

26 tháng 3 2017

rất dễ nhưng bn tự làm đi đằng mình ghi xong có bạn khác giải rùibucminh

26 tháng 3 2017

giải hộ mình đi mà mình chưa đc học

3 tháng 8 2020

Cảm ơn bạn rất rất nhiều hihi

1 tháng 8 2020

Bài 2b

Thay x = -1; y = 1 vào N ta đc:

\(N=\left(-1\right).1+\left(-1\right)^2.1^2+\left(-1\right)^3.1^3+\left(-1\right)^4.1^4+\left(-1\right)^5.1^5\)

\(=\left(-1\right)+1+\left(-1\right)+1+\left(-1\right)\)

\(=-1\)

1 tháng 8 2019

\(d,x-5\sqrt{x}=0\)

\(ĐKXĐ:x\ge0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}\)(Thỏa mãn ĐKXĐ)

Vậy...

3 tháng 8 2020

Gửi lẻ những câu hỏi để nhanh nhận được câu trả lời nha bạn ơi

14 tháng 12 2018

\(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{4031}{2015^2.2016^2}\)

\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{2016^2-2015^2}{2015^2.2016^2}\)

\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{2015^2}-\dfrac{1}{2016^2}\)

\(A=1-\dfrac{1}{2016^2}< 1\left(đpcm\right)\)