Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x-3}{2}+\frac{4x+1}{3}=\frac{2x-7}{6}\)
<=> 3(x - 3) + 2(4x + 1) = 2x - 7
<=> 3x - 9 + 8x + 2 = 2x - 7
<=> 11x - 7 = 2x - 7
<=> 11x - 7 - 2x = -7
<=> 9x - 7 = -7
<=> 9x = -7 + 7
<=> 9x = 0
<=> x = 0
\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)
b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep
c, tt
d, cx r
a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)
\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)
\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)
\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)
Câu A
X + (X+1) + (X+3) +...+ (X+2003) = 2004
Số số hạng trong tổng 1 + 3 + ... + 2003 là
(2003 - 1) : 2 + 1 = 1002
Tổng dãy 1 + 3 + ... + 2003 là:
(1 + 2003) * 1002 : 2 = 1004004
=> (1003.X) + 1004004 = 2004
=> (1003.X)= 2004 - 1004004
=> 1003.X = - 1002000
X = - 1002000/1003
E chỉ giải đc đến đây thui!!!!!!!!!!!!!!! :)))
x + ( x + 1) + (x + 3) ... + (x + 2003) = 2004
x + x + x + ... + x (có 1003 x) + 1 + 3 + 5 + ... + 2003 = 2004
x . 1003 + 1004004 = 2004
x . 1003 = 2004 - 1004004
x . 1003 = -1002000
x = -1002000 : 1003
x = -999,00299 = ~-999
mk ko biết làm
xin lỗi bn nhae
xin lỗi vì đã ko giúp được bn
chcus bn học gioi!
nhae@@@
Bài 1:
a) \(\frac{4}{9}x^2-y^2=\left(\frac{2}{3}x-y\right)\left(\frac{2}{3}x+y\right)\)
b) \(x^2-5=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
c) \(4x^2+6x+9=\left(2x+2\right)^2+5\)ko hiểu ???
d) \(\frac{1}{9}x^2-\frac{4}{3}xy+4=\left(\frac{1}{3}x\right)^2-2.\frac{1}{3}x.2+2^2=\left(\frac{1}{3}x-2\right)^2\)
Bài 2:
a) \(\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{1}{2}x+\frac{1}{3}y\right)=\frac{1}{4}x^2-\frac{1}{9}y^2\)
b) \(\left(2x-\frac{1}{3}y\right)\left(4x^2+\frac{2}{3}xy+\frac{1}{9}x^2\right)=8x^3-\frac{1}{27}y^3\)
c) \(\left(3x-5y\right)\left(9x^2+15xy+\frac{1}{9}x^2\right)=27x^3-125y^3\)
\(\frac{2}{3-x}+\frac{4x}{x^2-9}\)
\(=\frac{2}{3-x}-\frac{4x}{9-x^2}\)
\(=\frac{2}{3-x}-\frac{4x}{\left(3-x\right)\left(3+x\right)}\)
\(=\frac{2\left(x+3\right)}{\left(3-x\right)\left(3+x\right)}-\frac{4x}{\left(3-x\right)\left(3+x\right)}\)
\(=\frac{2x+6-4x}{\left(3-x\right)\left(3+x\right)}\)
\(=\frac{6-2x}{\left(3-x\right)\left(3+x\right)}\)
\(=\frac{2.\left(3-x\right)}{\left(3-x\right)\left(3+x\right)}\)
\(=\frac{2}{x+3}\)
\(\frac{2}{3-x}+\frac{4x}{x^2-9}\)
\(=\frac{-2}{x-3}+\frac{4x}{\left(x-3\right)\left(x+3\right)}\)
\(ĐKXĐ:\hept{\begin{cases}x-3#0\\x+3#0\end{cases}}\Rightarrow\hept{\begin{cases}x#3\\x#-3\end{cases}}\)
\(\frac{-2}{x-3}+\frac{4x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-2\left(x+3\right)+4x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-2x-6+4x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2x\left(-1+2\right)-6}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2x-6}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2}{x+3}\)
Vì sợ bạn ko hiểu nên mình mới làm dài dòng thế ok