Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
đk: \(x\ne-3;x\ne1\)
Ta có: \(\frac{x^2+6x+9}{1-x}\cdot\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}\)
\(=\frac{\left(x+3\right)^2}{-\left(x-1\right)}\cdot\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}\)
\(=\frac{-\left(x-1\right)^2}{2\left(x+3\right)}\)
\(=-\frac{x^2-2x+1}{2x+6}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne-3\\x\ne1\end{cases}}\)
\(\frac{x^2+6x+9}{1-x}.\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}=\frac{-\left(x+3\right)^2}{x-1}.\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}=\frac{-\left(x-1\right)^2}{2\left(x+3\right)}\)
a) \(\left(3-2x\right)\left(x+1\right)+x\left(2x-1\right)=3x+3-2x^2-2x+2x^2-x=3\)
b) \(\frac{x^2+9}{x^2+3x}+\frac{6}{x+3}=\frac{x^2+9}{x\left(x+3\right)}+\frac{6x}{x\left(x+3\right)}=\frac{x^2+6x+9}{x\left(x+3\right)}=\frac{\left(x+3\right)^2}{x\left(x+3\right)}=\frac{x+3}{x}\)
c)\(\frac{2+x}{2-x}+\frac{4x^2}{4-x^2}+\frac{x-2}{2+x}=\frac{\left(x+2\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}+\frac{-\left(x-2\right)^2}{\left(2+x\right)\left(2-x\right)}\)
\(=\frac{x^2+4x+4+4x^2-x^2+4x-4}{\left(2-x\right)\left(2+x\right)}=\frac{4x^2+8x}{\left(x+2\right)\left(2-x\right)}=\frac{4x\left(x+2\right)}{\left(x+2\right)\left(2-x\right)}=\frac{4x}{2-x}\)
d) \(\left(x^3+4x^2+6x+4\right):\left(x+2\right)\)
\(=\left(x^3+2x^2+2x^2+4x+2x+4\right):\left(x+2\right)\)
\(=\left[x^2\left(x+2\right)+2x\left(x+2\right)+2\left(x+2\right)\right]:\left(x+2\right)\)
\(=\left(x^2+2x+2\right)\left(x+2\right):\left(x+2\right)=x^2+2x+2\)
\(a,\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x-6}{4-9x^2}\)
\(=\frac{1}{3x-2}-\frac{1}{3x+2}+\frac{3\left(x-2\right)}{\left(3x+2\right)\left(3x-2\right)}\)
\(=\frac{3x+2-\left(3x-2\right)+3\left(x-2\right)}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\frac{1}{3x+2}\)
\(b,\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x}{x^2-9}\)
\(=\frac{18}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}-\frac{3}{\left(x-3\right)\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{18-3\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)
\(=\frac{18-3x-9-x^2+3x}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-x^2+9}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}=-\frac{1}{x-3}\)