\(\frac{3x+2}{x^2-2x+1}\) và \(\frac{1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

bạn không ghi yêu cầu nên mình làm như này

1) \(\frac{1}{x-3}\) và \(\frac{5}{x^2-3x}\)

Ta có: \(1.\left(x^2-3x\right)=x^2-3x\)

           \(\left(x-3\right).5=5x-15\)

\(\Rightarrow x^2-3x\ne5x-15\)

\(\Rightarrow1.\left(x^2-3x\right)\ne\left(x-3\right).5\)

Vậy: \(\frac{1}{x-3}\ne\frac{5}{x^2-3x}\)

2) \(\frac{x}{x^2+x}\) và \(\frac{2}{x-1}\) và \(\frac{x+2}{x^2-1}\)

Ta có: \(x.\left(x-1\right)=x^2-x\)

          \(2.\left(x^2+x\right)=2x^2+2x\)

\(\Rightarrow x^2-x\ne2x^2+2x\)

\(\Rightarrow x.\left(x-1\right)\ne2.\left(x^2+x\right)\)

\(\Rightarrow\frac{1-3x}{2x}\ne\frac{2}{x-1}\) (1)

Ta lại có: \(2.\left(x^2-1\right)=2x^2-2\)

                \(\left(x-1\right)\left(x+2\right)=x^2+2x-x-2\)

                                                   \(=x^2-x-2\)  

\(\Rightarrow2x^2-2\ne x^2-x-2\)

\(\Rightarrow2.\left(x^2-1\right)\ne\left(x-1\right)\left(x+2\right)\)

\(\Rightarrow\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\) (2)

Từ (1) và (2) => \(\frac{x}{x^2+x}\ne\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\)

3) \(\frac{1-3x}{2x}\) và \(\frac{3x-2}{2x-1}\) và \(\frac{3x-2}{4x^2-2x}\)

Ta có:\(\left(1-3x\right)\left(2x-1\right)=2x-1-6x^2+3x\)

                                                   \(=5x-1-6x^2\)

          \(2x.\left(3x-2\right)=6x^2-4x\)

\(\Rightarrow5x-1-6x^2\ne6x^2-4x\)

\(\Rightarrow\left(1-3x\right)\left(2x-1\right)\ne2x\left(3x-2\right)\)

\(\Rightarrow\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\)(1)

Ta lại có: \(\left(3x-2\right)\left(4x^2-2x\right)=12x^2-6x^2-8x^2+4x\)

                                                             \(=12x^3-14x^2+4x\)

                \(\left(2x-1\right)\left(3x-2\right)=6x^2-4x-3x+2\)

                                                         \(=6x^2-7x+2\)

\(\Rightarrow12x^3-14x^2+4x\ne6x^2-7x+2\)

\(\Rightarrow\left(3x-2\right)\left(4x^2-2x\right)\ne\left(2x-1\right)\left(3x-2\right)\)

\(\Rightarrow\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\) (2)

Từ (1) và (2) => \(\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\)

13 tháng 9 2016

Trong khó thế...

13 tháng 9 2016

ừa hi

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)

6 tháng 11 2016

mk ko biết làm 

xin lỗi bn nhae

xin lỗi vì đã ko giúp được bn

chcus bn học gioi!

nhae@@@

6 tháng 11 2016

mình không biết làm

tk nhé@@@@@@@@@@@@@@@@@@@@

LOL

hihi

6 tháng 7 2017

a ) \(\frac{4}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}=\frac{4\left(x-2\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{6-5x}{\left(x+2\right)\left(x-2\right)}=\frac{6x-4+6-5x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x+2}{\left(x+2\right)\left(x-2\right)}=\frac{1}{x+2}\)

b ) \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4x^2}=\frac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)+2-3x}{2x\left(2x-1\right)}\)

\(=\frac{-6x^2+5x-1+6x^2-4x+2-3x}{2x\left(2x-1\right)}=\frac{-2x+1}{2x\left(2x-1\right)}=\frac{-1}{2x}\)

c ) \(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}=\frac{1}{\left(x+3\right)^2}+\frac{1}{-\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)

\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{-12x+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{x^3-21x}{x^4-18x^2+81}\)

d ) \(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}=\frac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{x^3-1}=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{1}{x^2+x+1}\)

e ) \(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}=\frac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x}{x+2y}\)