Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ biết câu a thôi
a) \(\frac{\frac{5}{7}+\frac{5}{9}-\frac{5}{11}}{\frac{15}{7}+\frac{15}{9}-\frac{15}{11}}\)
= \(\frac{5\cdot\left(\frac{1}{7}+\frac{1}{9}-\frac{1}{11}\right)}{15\cdot\left(\frac{1}{7}+\frac{1}{9}-\frac{1}{11}\right)}\)
= \(\frac{5}{15}\)
= \(\frac{1}{3}\)
Chúc bạn học tốt
\(\frac{x}{15}=\frac{3}{5}+\frac{-2}{3}\)
\(\frac{x}{15}=\frac{9}{15}+\frac{-10}{15}\)
\(\frac{x}{15}=\frac{-1}{15}\)
\(=>x=-1\)
\(\frac{x}{15}=\frac{3}{5}+\frac{-2}{3}\)
\(\frac{x}{15}=\frac{-1}{15}\)
\(\Rightarrow15x=-15\)
\(x=-15:15\)
\(x=-1\)
Vậy x=1
\(1\frac{13}{15}.0,75-\left(\frac{8}{15}+25\%\right).\frac{24}{47}-3\frac{12}{13}:3\)
\(=\frac{28}{15}.\frac{3}{4}-\left(\frac{8}{15}+\frac{1}{4}\right).\frac{24}{47}-\frac{51}{13}:3\)
\(=\frac{7}{5}-\frac{47}{60}.\frac{24}{47}-\frac{17}{13}\)
\(=\frac{7}{5}-\frac{2}{5}-\frac{17}{13}\)
\(=\frac{-4}{13}\)
\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Leftrightarrow\frac{13}{3}.\frac{-1}{3}\le x\le\frac{2}{3}.\frac{-11}{12}\)
\(\Leftrightarrow\frac{-13}{9}\le x\le\frac{-11}{18}\)
\(\Leftrightarrow x=-1\)
mik ko ghi lại đề nhé!
\(A=\left(\frac{18}{15}.\frac{1}{4}.3\right)+\left(-\frac{47}{60}\right).\frac{24}{47}\)
\(A=\frac{8}{5}+\left(-\frac{2}{5}\right)\)
\(A=\frac{6}{5}\)
\(B=\frac{3}{4}.\frac{28}{15}-\left(\frac{8}{15}+\frac{1}{4}\right).\frac{24}{47}-\frac{17}{13}\)
\(B=\frac{7}{5}-\frac{47}{60}.\frac{24}{47}-\frac{17}{13}\)
\(B=\frac{7}{5}-\frac{2}{5}-\frac{17}{13}\)
\(B=1-\frac{17}{13}\)
\(B=-\frac{4}{13}\)
THANKS
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{15.16}\)
\(=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
=\(\frac{1}{8}\)
Tích cho mình nhé cảm ơn
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)
\(=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(=2\left(\frac{4}{16}-\frac{1}{16}\right)\)
\(=2\times\frac{3}{16}\)
\(=\frac{6}{16}=\frac{3}{8}\)
(\(\frac{12}{19}.\frac{19}{12}\))(\(\frac{-13}{17}.\frac{17}{13}\))\(\frac{7}{15}\)
= 1 . (-1) . \(\frac{7}{15}\)
= \(-\frac{7}{15}\)
Ta có: \( \left(\frac{12}{19}\times\frac{19}{12}\right)\times\left(\frac{-13}{17}\times\frac{17}{13}\right).\frac{19}{12}\)
=1.(-1).\(\frac{19}{12}\)
=(-1).\(\frac{19}{12}\)
=\(-\frac{19}{12}\)
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)
\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)
\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}\)
Bài làm
Ta có:
\(\frac{1}{11}>\frac{1}{20}\), \(\frac{1}{12}>\frac{1}{20}\), \(\frac{1}{13}>\frac{1}{20}\), \(\frac{1}{14}>\frac{1}{20}\), \(\frac{1}{15}>\frac{1}{20}\), \(\frac{1}{16}>\frac{1}{20}\), \(\frac{1}{17}>\frac{1}{20}\), \(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)
=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)
hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)
=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)
Do đó: \(S=\frac{1}{2}\)
# Chúc bạn học tốt #
Ta có: \(\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)
= \(15.\left(\frac{1}{90.94}+\frac{1}{94.98}+\frac{1}{98.102}+...+\frac{1}{146+150}\right)\)
= \(15.\left[\frac{1}{4}.\left(\frac{4}{90.94}+\frac{4}{94.98}+\frac{4}{98.102}+...+\frac{4}{146+150}\right)\right]\)
= \(15.\left[\frac{1}{4}.\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\right]\)
= \(15.\left[\frac{1}{4}.\left(\frac{1}{90}-\frac{1}{150}\right)\right]\)
= \(15.\left(\frac{1}{4}.\frac{1}{225}\right)\)
= \(=\frac{1}{60}\)
Bài làm
\(\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)
= \(15.\frac{1}{90.94}+15.\frac{1}{94.98}+15.\frac{1}{98.102}+...+15.\frac{1}{146.150}\)
= \(15.\left(\frac{1}{90.94}+\frac{1}{94.98}+\frac{1}{98.102}+...+\frac{1}{146.150}\right)\)
= \(15.\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\)
= \(15.\left(\frac{1}{90}-\frac{1}{150}\right)\)
= \(15.\left(\frac{5}{450}-\frac{3}{450}\right)\)
= \(15.\frac{2}{450}\)
= \(\frac{2}{30}\)
# Chúc bạn học tốt #