\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

CỨU

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)

\(=\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{15.16}\)

\(=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

=\(\frac{1}{8}\)

Tích cho mình nhé cảm ơn 

7 tháng 4 2019

\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)

\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)

\(=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)

\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(=2\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(=2\left(\frac{4}{16}-\frac{1}{16}\right)\)

\(=2\times\frac{3}{16}\)

\(=\frac{6}{16}=\frac{3}{8}\)

a) \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)

\(A=2\cdot\left(\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{15\cdot16}\right)\)

\(A=2\cdot\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(A=2\cdot\left(\frac{1}{4}-\frac{1}{16}\right)=2\cdot\frac{3}{16}=\frac{3}{8}\)

b) \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(B=\frac{5}{3}\cdot\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{25\cdot28}\right)\)

\(B=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(B=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)

19 tháng 7 2016

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)

\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(A=2.\frac{3}{16}=\frac{3}{8}\)

19 tháng 7 2016

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)

\(=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(=2.\frac{3}{16}=\frac{3}{8}\)

29 tháng 5 2019

#)Giải :

Câu 1 :

Đặt \(A=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)

\(\Rightarrow A>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)( 8 số hạng )

\(\Rightarrow A>\frac{8}{27}=\frac{8}{27}\)

\(\Rightarrow A>\frac{8}{27}\)

        #~Will~be~Pens~#

Câu 1:(trội)

Ta có:\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\left(đpcm\right)\)

 Câu 2:\(D=\frac{2^{25}.3^{15}+3^{15}.5.2^{26}}{2^{25}.3^{17}+3^{15}.2^{25}}=\frac{2^{25}3^{15}\left(1+5.2\right)}{2^{25}3^{15}\left(3^2+1\right)}=\frac{11}{10}\)

                 

7 tháng 7 2016

Ta có: \(B=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)

\(\Rightarrow B=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)

\(\Rightarrow B=2.\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)

\(\Rightarrow B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\right)\)

\(\Rightarrow B=2.\left(\frac{1}{4}-\frac{1}{16}\right)=2.\frac{3}{16}=\frac{3}{8}\)

Vậy \(B=\frac{3}{8}\)

nha m.n

7 tháng 7 2016

                                    \(B=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+.....+\frac{1}{120}\)

                                     \(B=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+.....+\frac{1}{240}\right)\)

                                    \(B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{15.16}\right)\)

                                    \(B=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+......+\frac{1}{15}-\frac{1}{16}\right)\)

                                    \(B=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

                                      \(B=2.\frac{3}{16}\)

                                    \(B=\frac{3}{8}\)

                                   Vậy \(B=\frac{3}{8}\)