\(\frac{1}{10}\)+\(\frac{1}{15}\)+\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)

\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(A=2.\frac{3}{16}=\frac{3}{8}\)

19 tháng 7 2016

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)

\(=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(=2.\frac{3}{16}=\frac{3}{8}\)

27 tháng 7 2017

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)

\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)

\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(A=2.\frac{3}{16}\)

\(A=\frac{3}{8}\)

27 tháng 7 2017

\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)

\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)

\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

\(B=\frac{1}{3}-\frac{1}{21}\)

\(B=\frac{2}{7}\)

29 tháng 8 2016

Chữ I là giá trị tuyệt đối nhé!

19 tháng 5 2019

#)Trả lời :

 \(A=\frac{\left(140+70+42+28+20+15\right)}{420}\)

\(A=\frac{315}{420}=\frac{\left(315:105\right)}{\left(420:105\right)}=\frac{3}{4}\)

Vậy : \(A=\frac{3}{4}\)

         #~Will~be~Pens~#

19 tháng 5 2019

Tính nhanh mà cậu

26 tháng 4 2017

a)   \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)

\(A=2.\frac{1}{20}+2.\frac{1}{30}+2.\frac{1}{42}+...+2.\frac{1}{240}\)

\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)

\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(A=2.\frac{3}{16}\)

\(A=\frac{3}{8}\)

b) để phân số \(\frac{7n}{7n+1}\)tối giản thì ƯCLN ( 7n ; 7n + 1 ) = 1 hoặc -1

đặt d là ƯCLN ( 7n ; 7n + 1 )

Ta có : 7n \(⋮\)d   ( 1 )

          7n + 1 \(⋮\)d  ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)7n + 1 - 7n \(⋮\)d

\(\Rightarrow\)\(⋮\)d

\(\Rightarrow\)\(\in\)Ư ( 1 )
\(\Rightarrow\)d = { 1 ; -1 }

Vậy với mọi n \(\in\)Z thì phân số \(\frac{7n}{7n+1}\)luôn là phân số tối giản