Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=1/2+(1/2)^2+(1/2)^3+...+(1/2)^98+(1/2)^99+(1/2)^99
=>A=1/2+12/22+13/23+...+198/298+199/299+199/299
=>A=1/2+1/22+1/23+...+1/298+1/299+1/299
=>2A-1/299=1+1/2+1/22+...+1/298
=>(2A-1/299)-(A-1/299)=(1+1/2+1/22+...+1/298)-(1/2+1/22+1/23+...+1/298+1/299)
=>(2A-1/299)-(A-1/299)=1-1/299
=>A=1-1/299 +1/299=1
vậy A=1
chắc thế
\(A=\frac{1}{2}+\frac{1}{2^2}+.............+\frac{1}{2^{99}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+...........+\frac{1}{2^{98}}\)
\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+.......+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{99}}\)
\(\Leftrightarrow2^{99}.A=2^{99}-1\left(đpcm\right)\)
Đặt \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(\Rightarrow2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{99}}\)
\(\Rightarrow A=1-\frac{1}{2^{99}}=\frac{2^{99}-1}{2^{99}}\)
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(2B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)
\(B=1-\frac{1}{2^{99}}< 1\left(đpcm\right)\)
câu g)
\(G=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right).\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}...\cdot\frac{120}{121}\)
\(=\frac{3.\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{2.2.3.3.4.4.5.5....11.11}\)
\(=\frac{12}{3}=4\)
A=\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
=>2A=1+\(\frac{1}{2}+...+\frac{1}{2^{98}}\)
=>2A-A=A=\(\left(1+\frac{1}{2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)
=>A=\(1-\frac{1}{2^{99}}\)
mình chịu thua vì mình cũng gặp câu này mà ko có lời giải