K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

\(A=\frac{1}{2}+\frac{1}{2^2}+.............+\frac{1}{2^{99}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+...........+\frac{1}{2^{98}}\)

\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+.......+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{99}}\)

\(\Leftrightarrow2^{99}.A=2^{99}-1\left(đpcm\right)\)

20 tháng 9 2016

21=45

3 tháng 2 2017

ai trả lời đúng k

3 tháng 2 2017

có cách làm nữa nha

14 tháng 3 2016

đặt A=1/2+(1/2)^2+(1/2)^3+...+(1/2)^98+(1/2)^99+(1/2)^99

=>A=1/2+12/22+13/23+...+198/298+199/299+199/299

=>A=1/2+1/22+1/23+...+1/298+1/299+1/299

=>2A-1/299=1+1/2+1/22+...+1/298

=>(2A-1/299)-(A-1/299)=(1+1/2+1/22+...+1/298)-(1/2+1/22+1/23+...+1/298+1/299)

=>(2A-1/299)-(A-1/299)=1-1/299

=>A=1-1/299 +1/299=1

vậy A=1

chắc thế

14 tháng 3 2016

cái phân số cuối sai thì phải 

2 tháng 12 2019

Đặt \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(\Rightarrow2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{99}}\)

\(\Rightarrow A=1-\frac{1}{2^{99}}=\frac{2^{99}-1}{2^{99}}\)

18 tháng 3 2019

A=\(\left(\frac{1}{2^2}-1\right)\)\(\left(\frac{1}{3^2}-1\right)\)\(\left(\frac{1}{4^2}-1\right)\)...\(\left(\frac{1}{98^2}-1\right)\)\(\left(\frac{1}{99^2}-1\right)\)

Do tích A có(99-2)+1=98 thừa số nguyên âm nên tích A dương

A=\(\frac{3}{4}\).\(\frac{8}{9}\).\(\frac{15}{16}\)...\(\frac{97.99}{98^2}\).\(\frac{98.100}{99^2}\)=\(\frac{1.2.3.4.5...97.98.99.100}{2^2.3^3.4^2...98^2.99^2}\)

=\(\frac{1.2.3.4...98}{2.3.4...98.99}.\frac{3.4.5...99.100}{2.3.4...98.99}=\frac{1}{99}.\frac{100}{2}=\frac{50}{99}\)

10 tháng 10 2015

\(B=\frac{1}{2}+\frac{1^2}{2^2}+\frac{1^3}{2^3}+........+\frac{1^{99}}{2^{99}}\)

\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\)

\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{99}}\right)\)

=>B=\(1-\frac{1}{2^{98}}\Rightarrow B