K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2015

Gọi \(A=\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2003}}+\frac{1}{2^{2004}}\)

      \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2002}}+\frac{1}{2^{2003}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{2002}}+\frac{1}{2^{2003}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2004}}\right)\)

\(2A-A=1+\frac{1}{2}+...+\frac{1}{2^{2002}}+\frac{1}{2^{2003}}-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2004}}\)

\(A=1+\frac{1}{2^{2004}}\)

12 tháng 7 2017

Ta có:

\(\frac{1\div2003+1\div2004-1\div2005}{5\div2003+5\div2004-5\div2005}\)    -     \(\frac{2\div2002+2\div2003-2\div2004}{3\div2002+3\div2003-3\div2004}\)

Đơn giản đi hết ta sẽ còn:

\(\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

2.

Ta có: 

Số khoảng cách của các số trong dãy là  23 = 8

=> Tổng của dãy dưới sẽ gấp 8 lần tổng dãy trên.

=> 3025 . 8 = 24200

ta có 1/2!+2/3!+....+2003/2004! (! là gì?: ví dụ 2!=1.2 ; 3!=1.2.3 ; 4!=1.2.3.4 )

=(2-1)/2!+(3-1)/3!+(4-1)/4!+........+(2004-1)/2004!

=2/2!-1/2!+3/3!-1/3!+4/4!-1/4!+.....+2004/2004!-1/2004!

=1-1/2!+1/2!-1/3!+1/3!-1/4!+....+1/2003!-1/2004!

=1/1/2004!<1

vậy biểu thức <1

18 tháng 2 2017

Gọi số bác sĩ là k thì số kĩ sư là 45 - k ; tổng tuổi các bác sĩ là 39k ; tổng tuổi các kĩ sư là 33 x (45 - k) = 1485 - 33k

Tuổi trung bình của 45 người là :\(\frac{39k+1485-33k}{45}=35\)

=> 1485 + 6k = 1575 => 6k = 90 => k = 15.Vậy có 15 bác sĩ

20 tháng 8 2016

1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x + 1) = 4007/2004

2/2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x + 1) = 4007/2004

2 × (1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/x(x + 1)) = 4007/2004

1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x + 1 = 4007/2004 : 2

1 - 1/x + 1 = 4007/2004 × 1/2

x/x + 1 = 4007/4008

=> x = 4007

đặt a=1/3+1/6+1/10+...........+2/n(n+1)

1/2a=1/6+1/12+...........+1/n(n+1)

1/2a=1/2.3+1/3.4+........+1/n(n+1)

1/2a=1/2-1/3+1/3-1/4+.......+1/n-1/n+1

1/2a=1/2-1/n+1

a=(1/2--1/n+1):1/2=2003/2004

1/2-1/n+1=2003/2004.1/2

1/2-1/n+1=2003/4008

1/n+1=1/2-2003/4008

1/n+1=1/4008

suy ra n+1=4008

n=4007

17 tháng 3 2017

n=4007 do

1 tháng 4 2018

Ta có : 

\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}+35=2^5\)

\(\Leftrightarrow\)\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=2^5-35\)

\(\Leftrightarrow\)\(\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+3}{2002}+1\right)=32-35+3\)

\(\Leftrightarrow\)\(\frac{x+2005}{2004}+\frac{x+2005}{2003}+\frac{x+2005}{2002}=-3+3\)

\(\Leftrightarrow\)\(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)=0\)

Vì \(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\ne0\)

Nên \(x+2005=0\)

\(\Rightarrow\)\(x=-2005\)

Vậy \(x=-2005\)

Chúc bạn học tốt ~ 

1 tháng 4 2018

Ta có: \(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}+35=2^5\)

\(\Rightarrow\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=2^5-35\)

\(\Rightarrow\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=-3\)

\(\Rightarrow\frac{x+1}{2004}+1+\frac{x+2}{2003}+1+\frac{x+3}{2002}+1=-3+3\)

\(\Rightarrow\frac{x+1+2004}{2004}+\frac{x+2+2003}{2003}+\frac{x+3+2002}{2002}=0\)

\(\Rightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}+\frac{x+2005}{2002}=0\)

\(\Rightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)=0\)

Vì \(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\ne0\)

Nên x + 2005 = 0

=> x                = -2005

Vậy x = -2005

7 tháng 3 2018

Bạn chuyển về 1 vế sau đó trừ 1 vào mỗi phân thức ta được : 

\(\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)

Vì biểu thức bên phải khác 0 nên : \(x-2005=0\)=> \(x=2005\)

23 tháng 3 2020

\(\frac{x-5}{2000}+\frac{x-4}{2001}+\frac{x-3}{2002}=\frac{x-2}{2003}+\frac{x-1}{2004}+\frac{x}{2005}\)

\(\Leftrightarrow\frac{x-2005}{2000}+\frac{x-2005}{2001}+\frac{x-2005}{2002}=\frac{x-2005}{2003}+\frac{x-2005}{2004}+\frac{x-2005}{2005}\)

\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)

<=> x - 2005 = 0

<=> x = 2005

Vậy ...............