Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất của tỉ lệ thức , ta có :
\(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+b}< \frac{a+d}{a+b+c+d}\left(1\right)\)
Mặt khác , ta có : \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(3\right)\)
Tương tự , ta có : \(\hept{\begin{cases}\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\left(4\right)\\\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\left(5\right)\\\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\left(6\right)\end{cases}}\)
Từ ( 3 ) ; ( 4 ) ; ( 5 ) ; ( 6 )
\(\Rightarrow1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Vậy...............
P/s : Nếu sai thì bỏ qua nha !
Kimetsu bn làm mak mik thấy cứ mắc mắc chỗ nào ý,cách làm thì ko có gì phải bàn.
Ta có:
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(1\right)\)
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(2\right)\)
\(\Leftrightarrow a^2+ab+ac+ad< a^2+ad+ab+ad+ca+cd\)
\(\Leftrightarrow cd+da>0\) ( luôn đúng )
\(\left(1\right);\left(2\right)\Rightarrow\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự rồi cộng lại nha !
a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc
b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
Ta có: \(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(1\right)\)
Mặt khác: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(3\right)\)
Tương tự: \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\left(4\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\left(5\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{b+d+a}< \frac{d+c}{a+b+c+d}\left(6\right)\)
Cộng vế với vế (3);(4);(5);(6) ta có:
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\left(đpcm\right)\)
Đặt A = a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b
A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d+a+b+c+d
A > a+b+c+d/a+b+c+d = 1 (1)
Áp dụng a/b < 1 <=> a/b < a+m/b+m (a;b;m > 0) ta có:
A < a+d/a+b+c+d + a+b/a+b+c+d + b+c/a+b+c+d + c+d/a+b+c+d
A < 2.(a+b+c+d)/a+b+c+d
A < 2
Từ (1) và (2) => đpcm
nguồn:soyeon_Tiểubàng giải
a, Có : (a-b)^2 >= 0
<=> a^2+b^2-2ab >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+b^2+2ab >= 4ab
<=> (a+b)^2 >= 4ab
Vì a,b > 0 nên ta chia 2 vế bđt cho (a+b).ab ta được :
a+b/ab >= 4/a+b
<=> 1/a+1/b >= 4/a+b
=> ĐPCM
Dấu "=" xảy ra <=> a=b>0
Tk mk nha