\(\frac{a}{b}\) và \(\frac{c}{d}\) (b>0,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc

b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)

2 tháng 11 2018

a) \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)

b) \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

     \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)

c) \(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)

5 tháng 6 2019

Giả sử \(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)(Vì a, b, c > 0)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ab+bc\)

\(\Leftrightarrow ac< bc\)(Đúng vì c > 0 và a < b)

Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)(đpcm)

Trả lời:

Ta có:

\(\frac{a}{b}< \frac{a+c}{b+c}\)

⇔ a(b + c) < (a + c)b

(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)

⇔ ab + ac < ab + bc

⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)

31 tháng 3 2019

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

31 tháng 3 2019

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0
10 tháng 3 2020

\(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}.\)

=> \(\frac{a^{2020}}{c^{2020}}=\frac{b^{2020}}{d^{2020}}=\frac{\left(a+b\right)^{2020}}{\left(b+d\right)^{2020}}\)

Xong lại áp dụng tính chất dãy tỉ số = nhau \(\frac{a^{2020}}{c^{2020}}=\frac{b^{2020}}{d^{2020}}=\frac{a^{2020}-b^{2020}}{c^{2020}-d^{2020}}.\)

Kết hợp lại là ra nhé

10 tháng 3 2020

Chết viết nhầm 1 chỗ @@

4 tháng 8 2016

Ta có:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\) 

                                              \(>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)

                                                    \(< \frac{2.\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ (1) và (2) => đpcm

4 tháng 8 2016

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{a+c}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>1\)

Ta luôn có phân số \(\frac{m}{n}< \frac{m+z}{n+z}\)với  \(m>n>0;z>0\)

\(\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+b+c+a+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Vậy \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

16 tháng 2 2019

1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)

\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được 

\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c

16 tháng 2 2019

2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0 

Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)

\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được 

\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)

Cộng 3 bđt trên lại ta được đpcm