Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^{x+1}=243\)
\(\Leftrightarrow3^{x+1}=3^5\)
\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)
b) \(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{64}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^{x+1}=\left(\frac{1}{2}\right)^6\)
\(\Leftrightarrow x+1=6\Leftrightarrow x=5\)
c) \(\frac{81}{3x}=9\)
\(\Leftrightarrow3x=9\Leftrightarrow x=3\)
d) \(2^{x+1}+2^{x+2}=192\)
\(\Leftrightarrow2^x.2+2^x.4=192\)
\(\Leftrightarrow2^x.6=192\Leftrightarrow2^x=32\Leftrightarrow x=5\)
e) Ta có : \(\hept{\begin{cases}\left(x-1\right)^{2020}\ge0\\\left(y+2\right)^{2022}\ge0\end{cases}\Rightarrow\left(x-1\right)^{2020}+\left(y+2\right)^{2020}\ge0}\)
Mà \(\left(x-1\right)^{2020}+\left(y+2\right)^{2022}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^{2020}=0\\\left(y+2\right)^{2022}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Bài giải
a, \(3^{x+1}=243\)
\(3^{x+1}=3^5\)
\(\Rightarrow\text{ }x+1=5\)
\(\Rightarrow\text{ }x=4\)
b, \(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{64}\)
\(\frac{1}{2^{x+1}}=\frac{1}{2^6}\)
\(2^{x+1}=2^6\)
\(\Rightarrow\text{ }x+1=6\)
\(\Rightarrow\text{ }x=5\)
c, \(\frac{81}{3x}=9\)
\(27x=81\)
\(x=3\)
d, \(2^{x+1}+2^{x+2}=192\)
\(2^{x+1}\left(1+2\right)=192\)
\(2^{x+1}\cdot3=192\)
\(2^{x+1}=64=2^6\)
\(\Rightarrow\text{ }x+1=6\)
\(\Rightarrow\text{ }x=5\)
e, \(\left(x-1\right)^{2020}+\left(y+2\right)^{2022}=0\)
Mà \(\hept{\begin{cases}\left(x-1\right)^{2020}\ge0\\\left(y+2\right)^{2022}\ge0\end{cases}}\) với mọi x,y nên \(\hept{\begin{cases}\left(x-1\right)^{2020}=0\\\left(y+2\right)^{2022}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
\(\Rightarrow\text{ }x=1\text{ ; }y=-2\)
Bài 3:
a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)
Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN
Mà \(\left|2x-\frac{1}{5}\right|\ge0\)
Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi
\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)
b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)
Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN
mà \(x+\frac{1}{2}\ge0\)
Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)
Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)
và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)
Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2
Phần b này thì mình không chắc lắm bạn tự xem lại nhé
Bài 1:
\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))
=> 11 - x = 1
=> x = 10
Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)
\(A=\left|4x-3\right|+\left|5y+7,5\right|+10\)
Mà \(\left|4x-3\right|\ge0\)với mọi x
\(\left|5y+7,5\right|\ge0\)với mọi y
\(\Rightarrow A\)có GTNN là 10
Để A có GTNN thì :
\(4x-3=0\) \(5y+7,5=0\)
\(4x=3\) \(5y=-7,5\)
\(x=\frac{3}{4}\) \(y=-1,5\)
\(B=\frac{5,8}{\left|2,5-x\right|+5,8}\)
Mà \(\left|2,5-x\right|\ge0\)
\(\Rightarrow\)GTNN \(\left|2,5-x\right|+5,8=5,8\)
Để B có GTLN \(\Rightarrow2,5-x=0\)
\(\Rightarrow x=2,5\)
sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html
a) 2(x-1)+3(x-3)=-2 b) x-1/3=x-2/2
2x-2+3x-9=-2 2 (x-1)=3(x-2)
(2x+3x)+(-2-9)=-2 2x-2=3x-6
5x+(-11)=-2 2x-3x=-6+2
5x=-2+11 -1x=-4
5x=9 x=4
x=1,8
Nhớ nha!
Câu a hình như sai đề mk sửa nha
a)\(A=\left(2x+\frac{1}{3}\right)^4-1\)
Vì \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Suy ra:\(\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Dấu = xảy ra khi \(2x+\frac{1}{3}=0\)
\(2x=-\frac{1}{3}\)
\(x=-\frac{1}{6}\)
Vậy Min A=-1 khi \(x=-\frac{1}{6}\)
b)\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)
Vì \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)
Suy ra:\(3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le3\)
Dấu = xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\)
\(\frac{4}{9}x=\frac{2}{15}\)
\(x=\frac{3}{10}\)
Vậy Max B=3 khi \(x=\frac{3}{10}\)
Vì |x + 1| ≥ 0 => |x + 1| + 2 ≥ 2
=> E ≤ 1/2
Dấu bằng xảy ra <=> |x + 1| = 0
<=> x + 1 = 0
<=> x = -1
Vậy Max E = 1/2 khi x = -1