K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2021

`đk:x ne 0,-2`

`a)D=(x/(x+2)+(8x+8)/(x^2+2x)-(x+2)/x):((x^2-x-3)/(x^2+2x)+1/x)`

`=((x^2+8x+8-x^2-4x-4)/(x(x+2))):((x^2-x-3+x+2)/(x(x+2)))`

`=(4x+4)/(x(x+2)):(x^2-1)/(x(x+2))`

`=(4x+4)/(x^2-1)(x ne +-1)`

`=4/(x-1)`

`b)x(x-2)-(x-2)=0`

`<=>(x-2)(x-1)=0`

Vì `x ne 1=>x-1 ne 0`

`=>x-2=0<=>x=2`

`=>D=4/(2-1)=4`

`c)D<0`

Mà `4>0`

`=>x-1<0`

`=>x<1`

Kết hợp đkxđ:

`=>x<1,x ne 0,x ne -2`

`d)D=2`

`<=>4/(x-1)=2`

`<=>2/(x-1)=1`

`<=>x-1=2`

`<=>x=3(tm)`

 

hay dong nao di nao

14 tháng 4 2020

ngu thì câm

3 tháng 4 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne3\\x\ne\pm2\end{cases}}\)

b) \(D=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right)\div\left(\frac{x-3}{2-x}\right)\)

\(\Leftrightarrow D=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{2-x}{x-3}\)

\(\Leftrightarrow D=\frac{4+4x+x^2-4+4x-x^2+4x^2}{\left(2+x\right)\left(x-3\right)}\)

\(\Leftrightarrow D=\frac{4x^2+8x}{\left(x+2\right)\left(x-3\right)}\)

\(\Leftrightarrow D=\frac{4x}{x-3}\)

c) Để D = 0

\(\Leftrightarrow\frac{4x}{x-3}=0\)

\(\Leftrightarrow4x=0\)

\(\Leftrightarrow x=0\)

Vậy để D = 0 \(\Leftrightarrow\)x = 0

d) Khi \(\left|2x-1\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=5\\1-2x=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=-2\left(ktm\right)\end{cases}}\)

Vậy khi \(\left|2x-1\right|=5\Leftrightarrow D\in\varnothing\)

6 tháng 4 2021

Bài 1 : 

a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

TH1 : Thay x = 2 vào biểu thức trên ta được : 

\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)

TH2 : Thay x = -2 vào biểu thức trên ta được : 

\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí 

c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)

\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)

Vậy với x = -1 thì A = 2 

d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)

\(\Rightarrow x+2< 0\)do 2 > 0 

\(\Leftrightarrow x< -2\)

Vậy với A < 0 thì x < -2 

e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x + 21-12-2
x-1-30-4
6 tháng 4 2021

2.

ĐKXĐ : \(x\ne\pm2\)

a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)

Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)

Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)

Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3

c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)

<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)

d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)

e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)

Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }

=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }

11 tháng 7 2018

ĐKXĐ: \(x\ne-5;0\)

\(A=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x.\left(x+5\right)}\)

\(=\frac{\left(x^2+2x\right).x}{2x.\left(x+5\right)}+\frac{2.\left(x+5\right).\left(x-5\right)}{2x.\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2.\left(x^2-25\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\)

b. \(A=0\Leftrightarrow\frac{x-1}{2}=0\Rightarrow x-1=0\Leftrightarrow x=1\)

\(A=\frac{1}{4}\Leftrightarrow\frac{x-1}{2}=\frac{1}{4}\Leftrightarrow4x-4=2\Leftrightarrow4x-6=0\Leftrightarrow x=\frac{3}{2}\)

c. Với x=0 thì \(A=\frac{0-1}{2}=-\frac{1}{2}\)

Với  x=2 thì: \(A=\frac{2-1}{2}=\frac{1}{2}\)

d. \(A>0\Leftrightarrow\frac{x-1}{2}>0\Rightarrow\left(x-1\right).2>0\Rightarrow x-1>0\Leftrightarrow x>1\)

\(A< 0\Leftrightarrow\frac{x-1}{2}< 0\Leftrightarrow\left(x-1\right).2< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1;x\ne-5,0\)

e. \(A=\frac{x-1}{2}\inℤ\Rightarrow x-1\in Z\Rightarrow x\inℤ\)

Và \(\left(x-1\right)⋮2\Rightarrow x:2dư1\)

Vậy \(A\in Z\Leftrightarrow x\inℤ\)và x chia 2 dư 1

11 tháng 7 2018

d. Bổ sung x khác -5 nữa nhé

27 tháng 7 2020

a)  \(ĐKXĐ:x\ne\pm2\)

\(D=\frac{3x}{x-2}+\frac{2}{x+2}-\frac{14x-4}{x^2-4}:\frac{x\left(x-1\right)}{x+2}\)

\(\Leftrightarrow D=\frac{3x^2+6x+2x-4-14x+4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{x\left(x-1\right)}\)

\(\Leftrightarrow D=\frac{3x^2-6x}{x\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow D=\frac{3x\left(x-2\right)}{x\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow D=\frac{3}{x-1}\)

b) Khi \(\left|x-1\right|-3=0\)

\(\Leftrightarrow\left|x-1\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\1-x=3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

Thay \(x=4\)vào D ta được :\(D=\frac{3}{4-1}=1\)

c) Để D có giá trị nguyên

\(\Leftrightarrow\frac{3}{x-1}\)có giá trị nguyên

\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x\in\left\{0;2;-2;4\right\}\)

Loại bỏ giá trị \(x=\pm2\)không làm cho biểu thức có nghĩa

Vậy để D có giá trị nguyên \(\Leftrightarrow x\in\left\{0;4\right\}\)

30 tháng 7 2020

Khi làm bài thì chỉnh lại giúp bạn cái đề: 

\(D=\left(\frac{3X}{X-2}+\frac{2}{X+2}-\frac{14X-4}{X^2-4}\right):\frac{X\left(X-1\right)}{X+2}\)

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)a)rút gọn A và tính A khi x=2b)Rút gọn B và tìm x để B=2/5c)tìm x thuộc Z  để (A,B)thuộc Z 2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2c)tìm x để A>03)B= x+2/x+3 - 5/x^2+x-6 - 1/2-xa)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị...
Đọc tiếp

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z  để (A,B)thuộc Z
 
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0

3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị nguyên

4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C    b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1         d) tìm giá trị nhỏ nhất của biểu thức C

5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D 
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
 

2
7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

a: ĐKXĐ: x<>2; x<>-2; x<>0; x<>3

b: \(P=\left(\dfrac{-\left(x+2\right)}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(=\dfrac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)

\(=\dfrac{4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{\left(x-3\right)}=\dfrac{-4x^2\left(x-2\right)}{\left(x+2\right)\left(x-3\right)}\)

c: 2(x-1)=6

=>x-1=3

=>x=4

Thay x=4 vào P, ta đc:

\(P=\dfrac{-4\cdot4^2\cdot\left(4-2\right)}{\left(4+2\right)\left(4-3\right)}=\dfrac{-64\cdot2}{6}=\dfrac{-128}{6}=-\dfrac{64}{3}\)

6 tháng 1 2023

hai dấu<> ý nghĩ là gì v bạn