Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay x=1 và y=-2 vào (P), ta được:
\(a\cdot1^2-4\cdot1+c=-2\)
\(\Leftrightarrow a-4+c=-2\)
hay a+c=-2+4=2
Thay x=2 và y=3 vào (P), ta được:
\(a\cdot2^2-4\cdot2+c=3\)
\(\Leftrightarrow4a-8+c=3\)
hay 4a+c=11
Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)
Vậy: (P): \(y=3x^2-4x-1\)
1. Gọi d' là đường thẳng qua A và vuông góc d
\(\Rightarrow\) d' nhận (1;3) là 1 vtpt
Phương trình d':
\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)
H là giao điểm d và d' nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)
\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)
2.
Do A' đối xứng A qua d nên H là trung điểm AA'
\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)
\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)
3.
Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)
Lấy điểm \(C\left(0;4\right)\) thuộc d
Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:
\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)
Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)
Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'
\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)
Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':
\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)
Từ đề bài ta có:
a/ \(\left\{{}\begin{matrix}0.a+0.b+c=0\\a+b+c=1\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=2\\c=0\end{matrix}\right.\) \(\Rightarrow y=-x^2+2x\)
b/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=8\\0.a+0.b+c=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=-6\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}0.a+0.b+c=5\\-\frac{b}{2a}=3\\\frac{b^2-4ac}{4a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=0\\-\frac{b}{2a}=\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k\\b=-3k\\c=2k\end{matrix}\right.\) với k là số thực khác 0 bất kì
Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.
Gọi I là giao điểm của AC và BD
Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)
Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)
Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)
Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE
- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)
Do I thuộc (C) nên có phương trình :
\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)
- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :
\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)
- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)
Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)
Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)
Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)
Do đường tròn tiếp xúc với đường thẳng d tại H nên IH và d vuông góc với nhau.
Đường thẳng IH: qua I( -1; 3) và nhận VTCP ( 3; -4) nên có VTPT n → ( 4;3) nên có phương trình là :
4( x + 1) + 3( y-3) =0 hay 4x+ 3y – 5= 0.
Ta có: IH và d cắt nhau tại H nên tọa độ của H là nghiệm hệ:
Chọn B.
PT giao Oy: \(x=0\Leftrightarrow y=3\Leftrightarrow A\left(0;3\right)\)
Chọn D
D.(0,3)