K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2019

A B C M E N F P D

Gọi AD là phân giác trong của \(\Delta\)ABC. Kéo dài DM cắt BE và CA lần lượt tại N và F, AN cắt BC tại P.

Dễ thấy \(\Delta\)ADB cân tại D có trung tuyến DM, suy ra DM là trung trực của AB

Do vậy ^DAN = ^DBN = 90o suy ra AP vuông góc AD hay AP là phân giác ngoài của \(\Delta\)ABC

Từ đó \(\left(BCPD\right)=-1\). Áp dụng phép chiếu xuyên tâm N: \(\left(BCPD\right)\rightarrow\left(ECFA\right)\)

Khi đó (ECFA) là hàng điều hòa. Mà ^AMF = 90o nên MA chính là phân giác của ^CME (đpcm).

3 tháng 2 2020

Chỉ lm bài thoii, hình bn tự vẽ nha !!!

\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)

Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp

Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)

\(b.\) Tứ giác \(ADEH\) có:

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp

Từ đó \(\widehat{BAK}=\widehat{BDE}\)

Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )

Do đó \(\widehat{BJK}=\widehat{BDE}\)

3 tháng 2 2020

Câu c mk làm sau cho nha !

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Ta có hai góc \(\widehat {xOz}\) và \(\widehat {tOy}\) đối đỉnh nên \(\widehat {xOz} = \widehat {tOy} = 38^\circ \)

hai góc \(\widehat {xOt}\) và \(\widehat {yOz}\) đối đỉnh nên \(\widehat {xOt} = \widehat {yOz}\)

\(\widehat {xOz}\) và \(\widehat {xOt}\) bù nhau nên \(\widehat {xOt} = 180^\circ  - \widehat {xOz} = 180^\circ  - 38^\circ  = 142^\circ \)

Vậy \(\widehat {xOz} = \widehat {tOy} = 38^\circ \) và \(\widehat {xOt} = \widehat {yOz} = 142^\circ \)

30 tháng 3 2017

Ta có: AQ = ABcot480

AP = ABcot350

QP = AB(cot350 - cot480)

=> AB =

Tính được AB ≈ 568,50m

30 tháng 3 2017

Ta có: Chiều cao của tháp DC = DC1 + C1C = 1,3 + DC1

=> DC = 1,3 +

=> DC ≈ 22,8m

30 tháng 3 2017

cãi đi bé Bài 11 trang 60 sgk hình học 10 - loigiaihay.com