K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

Chỉ lm bài thoii, hình bn tự vẽ nha !!!

\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)

Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp

Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)

\(b.\) Tứ giác \(ADEH\) có:

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp

Từ đó \(\widehat{BAK}=\widehat{BDE}\)

Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )

Do đó \(\widehat{BJK}=\widehat{BDE}\)

3 tháng 2 2020

Câu c mk làm sau cho nha !

17 tháng 5 2021

Huhu mng ơi giúp em phần c với :<

 

a: Xét (O) có

góc BEC, góc BDC đều là các góc nội tiếp chắn nửa đường tròn

=>góc BEC=góc BDC=90 độ

=>CE vuông góc AB, BD vuông góc AC

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

=>H là trực tâm

=>AH vuông góc BC tại F

góc BEH+góc BFH=180 độ

=>BEHF nội tiếp
b: Xét ΔHCB có CO/CB=CM/CH

nên OM//BH

=>góc COM=góc CBH

=>góc COM=góc FEC

=>góc MOF+góc FEM=180 độ

=>OMEF nội tiếp

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Xét tứ giác HMBI có:

∠HMI = ∠HBI (2 góc nội tiếp chắn 2 cung bằng nhau \(\widebat{AN}=\widebat{CN}\))

Mà 2 góc này cùng nhìn cạnh HI

=> Tứ giác BMHI nội tiếp

b) Xét ΔMNI và ΔMKC có:

∠KMC là góc chung

∠MNI = ∠KCM (2 góc nội tiếp chắn 2 cung bằng nhau \(\widebat{AM}=\widebat{BM}\))

=> ΔMNI ∼ ΔMCK => \(\frac{MN}{MC}=\frac{MI}{MK}\) => MN.MK = MC.MI

c) Xét tứ giác NKIC có:

∠KNI = ∠KCI (2 góc nội tiếp chắn 2 cung bằng nhau \(\widebat{AM}=\widebat{MB}\))

Mà 2 góc này cùng nhìn cạnh KI

=> Tứ giác NKIC là tứ giác nội tiếp

=> ∠NKI + ∠NCI = 180o (1)

Xét đường tròn (O) có:

\(\hept{\begin{cases}\widehat{ANK}=\widehat{ACM}\left(\text{2 góc nội tiếp cùng chắn cung AM}\right)\\\widehat{NAK}=\widehat{NCA}\left(\text{2 góc nội tiếp cùng chắn 2 cung BẰNG NHAU}\widebat{AN}=\widebat{CN}\right)\end{cases}}\)

=> ∠ANK + ∠NAK = ∠ACM + ∠NCA = ∠NCI (2)

Xét tam giác AKN có: ∠ANK + ∠NAK + ∠NKA = 180o (3)

Từ (1), (2), (3) => ∠NKI = ∠NKA

Xét tam giác IKN và tam giác AKN có:

∠NKI = ∠NKA

KN là cạnh chung

∠KNI = ∠KNA (2 góc nội tiếp chắn 2 cung bằng nhau)

=> ΔIKN = ΔAKN

=> IK=AK =>ΔAKI cân tại K

Tứ giác NKIC là tứ giác nội tiếp

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Mặt khác ∠KCN = ∠ABN (2 góc nội tiếp cùng chắn cung AN của (O))

∠BAC = ∠BNC (2 góc nội tiếp cùng chắc cung BC của (O))

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> Tứ giác AHIK là hình bình hành

Mà IK = AK

=> Tứ giác AHIK là hình thoi.

CÒN LẠI TỰ LÀM LÀM NHA

10 tháng 4 2020

bằng cục ứt

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Xét tứ giác BEFC có:}\)

\(\text{∠BEC = 90 o (CE là đường cao)}\)

\(\text{∠BFC = 90 ^0 (BF là đường cao)}\)

=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc vuông

=> Tứ giác BEFC là tứ giác nội tiếp

\(\text{Xét tứ giác AEHF có:}\)

\(\text{∠AEH = 90 o (CE là đường cao)}\)

\(\text{∠AFH = 90 o (BF là đường cao)}\)

=> ∠AEH + ∠AFH = 180^ o

=> Tứ giác AEHF là tứ giác nội tiếp.

\(\text{b) Xét ΔSBE và ΔSFC có:}\)

\(\text{∠FSC là góc chung}\)

\(\text{∠SEB = ∠SCF (Tứ giác BEFC là tứ giác nội tiếp)}\)

=> ΔSBE ∼ ΔSFC (g.g)

\(\Rightarrow\frac{SB}{SF}\)=\(\frac{SE}{SC}\)\(\Rightarrow\text{SE.SF = SB.SC (1)}\)

\(\text{Xét ΔSMC và ΔSNB có:}\)

\(\text{∠ NSC là góc chung}\)

\(\text{∠ SCM = ∠SNB (Hai góc nội tiếp cùng chắn cung MB)}\)

=> ΔSMC ∼ ΔSBN (g.g)

\(\Rightarrow\frac{SM}{SB}\)=\(\frac{SC}{SN}\Rightarrow\text{SM.SN = SB.SC (2)}\)

Từ (1) và (2) => SE.SF = SM.SN

\(\text{c) Ta có:}\)

\(\hept{\begin{cases}\widehat{KAE}=\widehat{KCB}\left(\text{2 GÓC NỘI TIẾP CÙNG CHẮN CUNG KB}\right)\\\widehat{HAE}=\widehat{BFM}\left(\text{TỨ GIÁC AEHF LÀ TỨ GIÁC NỘI TIẾP}\right)\\\widehat{KCB}=\widehat{BFM}\left(\text{TỨ GIÁC BEFC LÀ TỨ GIÁC NỘI TIẾP}\right)\end{cases}}\)

=> ∠KAE = ∠HAE

=> AE là tia phân giác của góc ∠KAH

\(\text{Mà AE cũng là đường cao của tam giác KAH}\)

=> ΔKAH cân tại A

=> AE là đường trung tuyến của ΔKAH

=> E là trung điểm của KH hay K và H đối xứng nhau qua AB

\(\text{d) Tia BF cắt đường tròn (O) tại J}\)

∠KJB = ∠KCB (2 góc nội tiếp cùng chắn cung KB)

∠KCB = ∠EFH (tứ giác BEFC là tứ giác nội tiếp )

=> ∠KJB = ∠EFH

Mà 2 góc này ở vị trí so le trong

=> KJ // EF

KI // EF (gt)

=> I ≡ J

=> H, F, J thẳng hàng

HÌNH THÌ VÀO XEM THỐNG KÊ HỎI ĐÁP NHA

BÀI LÀM ĐÚNG MÀ SAO CÓ NGƯỜI K SAI TÔI ĐẢM BẢO BÀI NÀY ĐÚNG 100%

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Ta có:}\)

∠BFC = 90o (góc nội tiếp chắn nửa đường tròn)=> ∠AFC = 90o

∠BEC = 90o (góc nội tiếp chắn nửa đường tròn)=> ∠AEC = 90o

Tứ giác AEHF có:

∠AFC = 90o

∠AEC = 90o

=>∠AFC + ∠AEC = 180o

=> AEHF là tứ giác nội tiếp

b) ∠AFH = 90o => AH là đường kính đường tròn ngoại tiếp tứ giác AEHF

\(\text{Do đó trung điểm I của AH là tâm đường tròn ngoại tiếp tứ giác AEHF}\)

=> Bán kính đường tròn ngoại tiếp tứ giác AEHF là R = AI = \(\frac{AH}{2}\) = 2cm

Ta có: ∠BAC = 60o

=> ∠FIE = 2∠BAC = 120o (Góc nội tiếp bằng \(\frac{1}{2}\) góc ở tâm cùng chắn một cung)

=> Số đo ∠EHF = 120o

Diện tích hình quạt IEHF là:

\(S=\frac{\pi R^2N}{360}=\frac{\pi.2^2.120}{360}=\frac{4\pi}{3}\left(ĐVDT\right)\)

\(\text{c) Xét tam giác ABC có: }\)

BE và CF là các đường cao

BE giao với CF tại H

=> H là trực tâm tam giác ABC

=>AH ⊥ BC hay ∠ADC = ∠ADB = 90o

Xét tứ giác BEFC có:

∠BFC = ∠BEC = 90o

=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc bằng nhau

=> BEFC là tứ giác nội tiếp

=> ∠HFE = ∠BEC ( 2 góc nội tiếp cùng chắn cung EC) (1)

Xét tứ giác BFHD có:

∠BFH = ∠HDB = 90o

=>∠BFH + ∠HDB = 180o

=> Tứ giác BFHD là tứ giác nội tiếp ( tổng 2 góc đối bằng 180o)

=> ∠DFH = ∠BEC ( 2 góc nội tiếp cùng chắn cung HD) (2)

Từ (1) và (2) = > ∠HFE = ∠DFH

=> FH tia phân giác của góc ∠DFE

d) Tam giác OFB cân tại O => ∠OFB = ∠FBO

Tam giác BFC vuông tại F => ∠FBO + ∠HCD = 90o

=> ∠OFB + ∠HCD = 90o (*)

\(\hept{\begin{cases}\Delta FIH\text{CÂN TẠI I}\\\widehat{IHF}=\widehat{DHC}\left(\text{ĐỐI ĐỈNH}\right)\\\Delta HDC\text{VUÔNG TẠI D}\Rightarrow\widehat{DHC}+\widehat{HDC}=90^0\end{cases}}\Rightarrow\widehat{IFH}+\widehat{HDC}=90^0\)

Từ (*) và (**) => ∠OFB = ∠IFH

=> ∠OFB + ∠OFH = ∠IFH + ∠OFH <=> ∠BFC = ∠FIO <=> ∠FIO) = 90o

Vậy FI là tiếp tuyến của (O)

Chứng minh tương tự EI là tiếp tuyến của (O)

Mà I là trung điểm của AH

=> Tiếp tuyến của (O) tại E và F và AH đồng quy tại 1 điểm.

HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP CỦA MIK NHA

VCN JACK trả lời cuc64 kì đ luôn . đ là chất