\(a\ge3;b\ge3;a^2+b^2\ge25\) thì <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

giả sử \(a+b< 7\Leftrightarrow a< 7-b\)

có: \(\left(7-b\right)^2+b^2>a^2+b^2\ge25\)

\(\Leftrightarrow b^2-7b+12>0\Leftrightarrow\left(b-3\right)\left(b-4\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}b< 3\\b>4\end{matrix}\right.\)

trường hợp b<3 hiển nhiên trái với giả thiết.

ta xét b > 4.

Lại có: \(a+4< a+b< 7\)( điều giả sử)

\(\Leftrightarrow a< 3\)( vô lý )

Vậy điều giả sử sai , ngược lại \(a+b\ge7\) đúng

18 tháng 7 2017

Đoạn \(\left(7-b\right)^2+b^2>a^2+b^2\ge25\Leftrightarrow b^2-7b+12>0\) làm sao ra đc vậy?

20 tháng 8 2016

Đặt \(a=3+x\) , \(b=3+y\) (\(x,y\ge0\)) thì \(a+b=\left(x+y\right)+6\)

Ta có : \(a^2+b^2\ge25\Leftrightarrow\left(3+x\right)^2+\left(3+y\right)^2\ge25\Leftrightarrow x^2+y^2+6\left(x+y\right)+18\ge25\)

Ta sẽ chứng minh \(x+y\ge1\) . Thật vậy , giả sử \(0\le x+y< 1\)

\(\Rightarrow x^2+2xy+y^2< 1\Rightarrow x^2+y^2< 1\)

Do đó : \(a^2+b^2=\left(x^2+y^2\right)+6\left(x+y\right)+18< 1+6+18=25\) trái với giả thiết.

Vậy \(x+y\ge1\) \(\Rightarrow a+b\ge7\) (đpcm)

 

sorry Em ms hok lóp 7 thui ak! 2 năm nữa em sẽ giúp

10 tháng 2 2016

em nam nay moi hoc lop 6 thoi

10 tháng 3 2019

Autofix: ON

\(VT=a+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\)

\(=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)

\(\ge4\sqrt[4]{a-b\cdot\frac{4}{\left(a-b\right)\left(b+1\right)^2}\cdot\frac{b+1}{2}\cdot\frac{b+1}{2}}-1\)

\(\ge4-1=3=VP\)

2 tháng 1 2018

Ta có:

\(21b+\frac{3}{a}=\frac{3}{a}+\frac{a}{3}+\frac{62a}{3}\ge2\sqrt{\frac{3}{a}.\frac{a}{3}}+\frac{62.3}{3}=2+62=64\left(a\ge3\right)\left(1\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{3}{a}=\frac{a}{3}\)và  \(a=3\Leftrightarrow a=3\)

\(\frac{21}{b}+3b=\frac{21}{b}+\frac{7b}{3}+\frac{2b}{3}\ge2\sqrt{\frac{21}{b}.\frac{7b}{3}}+\frac{2.3}{3}=14+2=16\left(b\ge3\right)\left(2\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{21}{b}=\frac{7b}{3}\)và  \(b=3\Leftrightarrow b=3\)

Từ (1) và (2) suy ra điều cần chứng minh.

Dấu "=" xảy ra \(\Leftrightarrow a=b=3\)

8 tháng 8 2016

Ta có : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\left(\frac{a}{b}+\frac{b}{a}\right)\)(1) . Đặt \(x=\frac{a}{b}+\frac{b}{a}\)

\(\Rightarrow\left|x\right|=\left|\frac{a}{b}+\frac{b}{a}\right|=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\) \(\Rightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)

bpt (1) \(\Leftrightarrow\left(x^2-2\right)+4\ge3x\Leftrightarrow x^2-3x+2\ge0\)

Xét bất phương trình sau : \(y^2-3y+2\ge0\Leftrightarrow\left(y-1\right)\left(y-2\right)\ge0\Leftrightarrow\orbr{\begin{cases}y\ge2\\y\le1\end{cases}}\)

Từ \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\) suy ra x nằm trong miền nghiệm của bất  phương trình đang xét , vậy x phải  thỏa mãn  \(y^2-3y+2\ge0\), tức là \(x^2-3x+2\ge0\)đúng.

Suy ra (1) đúng. Vậy ta có đpcm 

8 tháng 8 2016

+TH1: a, b trái dấu \(\Rightarrow\frac{a}{b}+\frac{b}{a}\le0\)

\(\Rightarrow VT>0\ge VP\), bất đẳng thức luôn đúng

+TH2: a, b cùng dấu \(\Rightarrow\frac{a}{b}+\frac{b}{a}=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\sqrt{\left|\frac{a}{b}\right|.\left|\frac{b}{a}\right|}=2\)

bđt \(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)^2+2\ge3\left(\frac{a}{b}+\frac{b}{a}\right)\)

Đặt \(t=\frac{a}{b}+\frac{b}{a}\ge2\)

Cần chứng minh \(t^2+2\ge3t\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\text{ }\left(\text{đúng }\forall t\ge2\right)\)

1 tháng 8 2019

Nguyễn Thu Huyền Chỗ nào có \(\le\) thì chuyển thành \(\ge\) nhé. Thế là ok. Tại mk bấm nhầm leu

30 tháng 7 2019

\(\text{Ta có }:a^2+ab+b^2=\left(a^2+2ab+b^2\right)-ab\\ =\left(a+b\right)^2-ab\overset{BĐT\text{ }Cô-si}{\le}\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3}{4}\left(a+b\right)^2\\ \Rightarrow\sqrt{a^2+ab+b^2}\le\frac{\sqrt{3}}{2}\left(a+b\right)\)

Tương tự : \(\sqrt{b^2+bc+c^2}\le\frac{\sqrt{3}}{2}\left(b+c\right)\)

\(\sqrt{a^2+ac+c^2}\le\frac{\sqrt{3}}{2}\left(a+c\right)\\ \Rightarrow\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{a^2+ac+c^2}\\ \le\frac{\sqrt{3}}{2}\left(a+b\right)+\frac{\sqrt{3}}{2}\left(b+c\right)+\frac{\sqrt{3}}{2}\left(a+c\right)\\= \frac{\sqrt{3}}{2}\left(a+b+b+c+a+c\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}a=b\\b=c\\a=c\\a+b+c=3\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=1\)