K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sorry Em ms hok lóp 7 thui ak! 2 năm nữa em sẽ giúp

10 tháng 2 2016

em nam nay moi hoc lop 6 thoi

5 tháng 2 2016

giải giùm mình

2 tháng 2 2022

Ta đặt:

     \(\left\{{}\begin{matrix}x=a-1\\y=b-2\\z=c-3\end{matrix}\right.\)

        \(\Rightarrow x+y+z=3\) và  \(x,y,z\ge0\) (*)

Biểu thứ P trở thành:

     \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}\)

Từ (*) dễ thấy:

     \(\left\{{}\begin{matrix}0\le x\le3\\0\le y\le3\\0\le z\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le x\le\sqrt{3x}\\0\le y\le\sqrt{3y}\\0\le z\le\sqrt{3z}\end{matrix}\right.\)

Do đó:

     \(P\ge\dfrac{x+y+z}{\sqrt{3}}=\sqrt{3}\)

Dầu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)=\left(0;3;0\right)=\left(0;0;3\right)\)

NV
18 tháng 9 2021

a.

\(a+b+c\ge3\sqrt[3]{abc}=6\) \(\Rightarrow2\left(a+b+c\right)\ge12\Rightarrow-12\ge-2\left(a+b+c\right)\)

Ta có:

\(a^2+b^2+c^2=a^2+4+b^2+4+c^2+4-12\ge4a+4b+4c-2\left(a+b+c\right)=2\left(a+b+c\right)\)

b.

\(a^3+b^3+c^3=\dfrac{1}{2}\left(a^3+a^3+8\right)+\dfrac{1}{2}\left(b^3+b^3+8\right)+\dfrac{1}{2}\left(c^3+c^3+8\right)-12\)

\(\ge3a^2+3b^2+3c^2-12\ge3a^2+3b^2+3c^2-2\left(a+b+c\right)\ge3a^2+3b^2+3c^2-\left(a^2+b^2+c^2\right)=...\)

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Lời giải:

Do \(a\geq 1; b\geq 2; c\geq 3\Rightarrow a-1, b-2, c-3\geq 0\)

Áp dụng BĐT AM-GM cho các số không âm ta có:

\(\left\{\begin{matrix} (a-1)+4\geq 2\sqrt{4(a-1)}=4\sqrt{a-1}\\ (b-2)+9\geq 2\sqrt{9(b-2)}=6\sqrt{b-2}\\ (c-3)+16\geq 2\sqrt{16(c-3)}=8\sqrt{c-3}\end{matrix}\right.\)

Cộng theo vế và rút gọn thu được:

\(a+b+c+23\geq 4\sqrt{a-1}+6\sqrt{b-2}+8\sqrt{c-3}\) (đpcm)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} a-1=4\\ b-2=9\\ c-3=16\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=5\\ b=11\\ c=19\end{matrix}\right.\)