Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử bất đẳng thức trên là đúng \(\Rightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)\(\Rightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)(luôn đúng với mọi a,b,c), ta có ĐPCM câu b tương tự nha bn!
Bài 2:Áp dụng BĐT AM-GM ta có:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)
Khi a=b=c
Bài 3:
Áp dụng BĐT C-S dạng ENgel ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)
Khi \(a=b=c=\frac{1}{3}\)
Bài 4:
Áp dụng BĐT AM-GM ta có:
\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};x+z\ge2\sqrt{xz}\)
Nhân theo vế 3 BĐT trên ta có ĐPCM
Khi x=y=z
Áp dụng BĐT Svarxơ:
\(\Sigma\frac{a^2}{\sqrt{5-2\left(b+c\right)}}\ge\frac{\left(a+b+c\right)^2}{\sqrt{5-2\left(b+c\right)}+\sqrt{5-2\left(a+c\right)}+\sqrt{5-2\left(a+b\right)}}\)\(\frac{3^2}{\sqrt{5-2\left(b+c\right)}+\sqrt{5-2\left(a+c\right)}+\sqrt{5-2\left(b+c\right)}}\)
Có: \(\sqrt{5-2\left(b+c\right)}=\sqrt{2\left(1-\left(3-a\right)\right)+3}\)\(=\sqrt{-4+2a+3}=\sqrt{2a-1}\)
CMTT: \(\sqrt{5-2\left(a+c\right)}=\sqrt{2b-1}\);\(\sqrt{5-2\left(a+b\right)}=\sqrt{2c-1}\)
\(\Rightarrow\Sigma\frac{a^2}{\sqrt{5-2\left(b+c\right)}}\ge\frac{9}{\sqrt{2a-1}+\sqrt{2b-1}+\sqrt{2c-1}}\)\(\ge\frac{9}{\sqrt{\left(1^2+1^2+1^2\right)\left(2a-1+2b-1+2c-1\right)}}\)(BDT Bunhiacopxki)\(=\frac{9}{\sqrt{3\left[2\left(a+b+c\right)-3\right]}}=\frac{9}{\sqrt{3\left[6-3\right]}}=\frac{9}{3}=3\)(dpcm)
a/ có \(a^2+b^2+c^2+\frac{3}{4}\ge-\left(a+b+c\right)\)
\(\Leftrightarrow a^2+a+\frac{1}{4}+b^2+b+\frac{1}{4}+c^2+c+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng với mọi a,b,c)
b/ \(2a^2+2b^2+8-2ab+4\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+4a+4+b^2+4b+4+a^2+2ab+b^2\ge0\)
\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(a+b\right)^2\ge0\)(luôn đúng)
bài 2 áp dụng bất đẳng thức cô si cho 3 số dương ta có
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)
bài 3: giả sử \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\ge6\)
áp dụng bất đẳng thức cô si cho 2 số dương ta có
\(\frac{x}{y}+\frac{y}{x}\ge2\)cmtt \(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\ge6\)
áp dụng bất đăng thức trên ta đc
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
bái 4: áp dụng bất đẳng thức cô si cho từng cái, nhân vế theo vế là đc nhé bn
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Áp dụng BĐT AM-GM ta có:
\(VT=a^2+b^2+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)
\(=1+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)
\(=1+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)\)
\(\ge3+2\sqrt{\frac{1}{a}\cdot2a}+2\sqrt{\frac{1}{b}\cdot2b}-\sqrt{2\left(a^2+b^2\right)}\)
\(\ge3+4\sqrt{2}-\sqrt{2}=3+3\sqrt{2}=3\left(1+\sqrt{2}\right)\)
Khi \(a=b=\frac{1}{\sqrt{2}}\)
Ta có : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\left(\frac{a}{b}+\frac{b}{a}\right)\)(1) . Đặt \(x=\frac{a}{b}+\frac{b}{a}\)
\(\Rightarrow\left|x\right|=\left|\frac{a}{b}+\frac{b}{a}\right|=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\) \(\Rightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
bpt (1) \(\Leftrightarrow\left(x^2-2\right)+4\ge3x\Leftrightarrow x^2-3x+2\ge0\)
Xét bất phương trình sau : \(y^2-3y+2\ge0\Leftrightarrow\left(y-1\right)\left(y-2\right)\ge0\Leftrightarrow\orbr{\begin{cases}y\ge2\\y\le1\end{cases}}\)
Từ \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\) suy ra x nằm trong miền nghiệm của bất phương trình đang xét , vậy x phải thỏa mãn \(y^2-3y+2\ge0\), tức là \(x^2-3x+2\ge0\)đúng.
Suy ra (1) đúng. Vậy ta có đpcm
+TH1: a, b trái dấu \(\Rightarrow\frac{a}{b}+\frac{b}{a}\le0\)
\(\Rightarrow VT>0\ge VP\), bất đẳng thức luôn đúng
+TH2: a, b cùng dấu \(\Rightarrow\frac{a}{b}+\frac{b}{a}=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\sqrt{\left|\frac{a}{b}\right|.\left|\frac{b}{a}\right|}=2\)
bđt \(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)^2+2\ge3\left(\frac{a}{b}+\frac{b}{a}\right)\)
Đặt \(t=\frac{a}{b}+\frac{b}{a}\ge2\)
Cần chứng minh \(t^2+2\ge3t\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\text{ }\left(\text{đúng }\forall t\ge2\right)\)