Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
a) 216x3 + ( x + y )3 = ( 6x )3 + ( x + y )3
= [ 6x + ( x + y ) ][ ( 6x )2 - 6x( x + y ) + ( x + y )2 ]
= ( 6x + x + y )( 36x2 - 6x2 - 6xy + x2 + 2xy + y2 )
= ( 7x + y )( 31x2 - 4xy + y2 )
b) ( 2x + 1 )3 + 8x3 = ( 2x + 1 )2 + ( 2x )3
= [ ( 2x + 1 ) + 2x ][ ( 2x + 1 )2 - ( 2x + 1 )2x + ( 2x )2
= ( 2x + 1 + 2x )( 4x2 + 4x + 1 - 4x2 - 2x + 4x2 )
= ( 4x + 1 )( 4x2 + 2x + 1 )
c) ( 5x - 2 )3 - 27x3 = ( 5x - 2 ) - ( 3x )3
= [ ( 5x - 2 ) - 3x ][ ( 5x - 2 )2 + ( 5x - 2 )3x + ( 3x )2
= ( 5x - 2 - 3x )( 25x2 - 20x + 4 + 15x2 - 6x + 9x2 )
= ( 2x - 2 )( 49x2 - 26x + 4 )
= 2( x - 1 )( 49x2 - 26x + 4 )
a) \(216x^3+\left(x+y\right)^3=\left(6x\right)^3+\left(x+y\right)^3\)
\(=\left(6x+x+y\right)\left[\left(6x\right)^2-6x\left(x+y\right)+\left(x+y\right)^2\right]\)
\(=\left(7x+y\right)\left(36x^2-6x^2-6xy+x^2+2xy+y^2\right)\)
\(=\left(7x+y\right)\left(31x^2-4xy+y^2\right)\)
b) \(\left(2x+1\right)^3+8x^3=\left(2x+1\right)^3+\left(2x\right)^3\)
\(=\left(2x+1+2x\right)\left[\left(2x+1\right)^2-2x\left(2x+1\right)+\left(2x\right)^2\right]\)
\(=\left(4x+1\right)\left(4x^2+4x+1-\left(4x^2-2x\right)+4x^2\right)\)
\(=\left(4x+1\right)\left(4x^2+1+2x\right)\)
c) \(\left(5x-2\right)^3-27x^3=\left(5x-2\right)^3-\left(3x\right)^3\)
\(=\left(5x-2-3x\right)\left[\left(5x-2\right)^2+3x\left(5x-2\right)+\left(3x\right)^2\right]\)
\(=\left(2x-2\right)\left(25x^2-20x+4+15x^2-6x+9x^2\right)\)
\(=\left(2x-2\right)\left(49x^2-26x+4\right)\)
b)3x^2-18x+27=3x^2-9x-9x+27=3x*(x-3)-9*(x-3)=(x-3)*(3x-9)=(x-3)*3*(x-3)=3*(x-3)^2
c)x^3-4x^2-12x+27=(x+3)*(x^2-3x+9-4)=(x+3)*(x^2-3x+5)
d)27x^3-1/27=(3x-1/3)*(9x^2-x+1/9) (hang dt)
con a) voi e) mk chiu
a, \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
b, \(1-9x+27x^2-27x^3=-\left(3x-1\right)^3\)
Mình có làm ở câu dưới rồi . Bạn tham khảo link :
https://olm.vn/hoi-dap/detail/231817932107.html
\(a,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)
Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)
Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)
Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)
Và \(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:
\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt
Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)
\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)
\(c,x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(d,x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(e,8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)
\(f,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)
a
4x2--25=0
=> (2x)22 --52 =0
=> (2x-5)(2x+5)=0
\(\orbr{\begin{cases}2x-5=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}X=\frac{5}{2}\\X=\frac{-5\:\:. \:\:\:\:\:\:\:\:\:\:TT}{2}\end{cases}Mình\:}\)
\(4x^2=25\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\sqrt{\frac{25}{4}}\) \(=\frac{5}{2}\)
\(\left(x^3-x^2\right)^2-\left(4x^2-8x+4\right)=0\)
= \(\left(x^3-x^2\right)^2-\left(2x-2\right)^2=0\)
=(\(\left(x^3-x^2-2x+2\right)\left(x^3-x^2+2x-2\right)=0\)
=\(\left[x^2\left(x-1\right)-2\left(x-1\right)\right]\) \(\left[x^2\left(x-1\right)+2\left(x-1\right)\right]\)=0
=\(\left(x-1\right)\left(x^2-2\right)\left(x-1\right)\left(x^2+2\right)\) = 0
= \(\left(x-1\right)\left(x^2-2\right)\left(x^2+2\right)=0\)
=\(\left(x-1\right)\left(x^4-4\right)\) = 0
=> \(x-1=0\) hoặc \(x^4-4=0\)
=> \(x=1\) hoặc \(x=\pm\sqrt{2}\)
câu 2
a)\(\left(3x^2\right)^3-\left(2x\right)^3\)
= \(\left(3x^2-2x\right)\left(9x^4-54x^5+36x^4-4x^2\right)\)
= \(x\left(3x-2\right)\left(9x^4-54x^5+36x^4-4x^2\right)\)
may be wrong , but chawsc k nhiều , chỗ nào k hiểu ib hỏi mk sai nha <3
1,
a, \(\left(2x-5\right)\cdot\left(2x+5\right)=0\)
\(x=\frac{5}{2}\)
x\(=-\frac{5}{2}\)
b \(\left(x^3-x^2\right)^2-\left(2x-2\right)^2\)=0
(x-2x+2)(x+2x-2)=0
x=2
x=2/3
2,
a (3x^2)^3-(2x)^3
(3x^2-2x)(9x^4+6x^3+4x^2)
\(4x^2-25=0\)
\(\left(2x-5\right)\left(2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\2x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
\(27x^6-8x^3=\left(3x^2\right)^3-\left(2x\right)^3=\left(3x^2-2x\right)\left[\left(3x^2\right)^2+3x^2.2x+\left(2x\right)^2\right]=x^3.\left(3x-2\right).\left(3x^2+6x+4\right)\)
1a) 4x2 - 25 = 0 => 4x2 = 25 => x2 = \(\frac{25}{4}\)= \(\left(\frac{5}{2}\right)^2\)=> x = \(\frac{5}{2}\)
6ajkjhdkjgoujaj'/
'mlmd.kbnkndfkrjtens ze
/dF
1) \(a^6-b^6=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a-b\right)\left(a+b\right)\left(a^4+a^2b^2+b^4\right)\)
2) \(27x^3-a^3b^3=\left(3x-ab\right)\left(9x^2+3xab+a^2b^2\right)\)
3) \(\frac{1}{8}-8x^3=\left(\frac{1}{2}-2x\right)\left(\frac{1}{4}+x+4x^2\right)\)
4) \(8+\left(4x-3\right)^3=\left(2+4x-3\right)\left[4-2\left(4x-3\right)+\left(4x-3\right)^2\right]\)
\(=\left(4x-1\right)\left(4-8x+6+16x^2-24x+9\right)\)
\(=\left(4x-1\right)\left(16x^2-32x+19\right)\)