K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2021

a, Thay m vào pt ta được :

(3+1).x2-2(3+1).x+3-3=0

\(\Leftrightarrow\)4x2-8x=0

\(\Leftrightarrow4x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy m=3 phương trình có 2 nghiệm là 0 và 2

b, Theo Vi et ta có :

\(\left\{{}\begin{matrix}x_1.x_2=\dfrac{m-3}{m+1}\\x_1+x_2=\dfrac{2\left(m+1\right)}{m+1}\end{matrix}\right.\left(vớim\ne-1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1.x_2=\dfrac{m-3}{m+1}\\x_1+x_2=2\end{matrix}\right.\)  (1)

Ta có : (4x1+1)(4x2+1)=18

\(\Leftrightarrow16x_1.x_2+4x_1+4x_2+1=18\)

\(\Leftrightarrow16.x_1.x_2+4\left(x_1+x_2\right)=17\)  (2)

Thay (1) vào (2) ta được : 

         16.\(\dfrac{m-3}{m+1}+4.2=17\)

\(\Leftrightarrow\dfrac{16m-48}{m+1}=9\)

\(\Leftrightarrow9\left(m+1\right)=16m-48\)

\(\Leftrightarrow9m+9=16m-48\)

\(\Leftrightarrow7m=57\)

\(\Leftrightarrow m=\dfrac{57}{7}\) (thỏa mãn m\(\ne-1\))

Vậy ..

NV
30 tháng 5 2020

Để pt có 2 nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\4m+4\ge0\end{matrix}\right.\) \(\Rightarrow m>-1\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=\frac{m-3}{m+1}\end{matrix}\right.\)

Sửa đề: \(\left(4x_1+1\right)\left(4x_2+1\right)=18\)

\(\Leftrightarrow16x_1x_2+4\left(x_1+x_2\right)+1=18\)

\(\Leftrightarrow\frac{16\left(m-3\right)}{m+1}+9=18\)

\(\Leftrightarrow16\left(m-3\right)=9\left(m+1\right)\Rightarrow m=\frac{57}{7}\)

17 tháng 6 2022

ko biết làm

8 tháng 5 2021

a. thay m=-4 vào (1) ta có:

\(x^2-5x-6=0\)

Δ=b\(^2\)-4ac= (-5)\(^2\) - 4.1.(-6)= 25 + 24= 49 > 0

\(\sqrt{\Delta}=\sqrt{49}=7\)

x\(_1\)=\(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+7}{2}\)=6

x\(_2\)=\(\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-7}{2}\)=-1

vậy khi x=-4 thì pt đã cho có 2 nghiệm x\(_1\)=6; x\(_2\)=-1

 

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

3 tháng 5 2021

Ta có Δ=[-2(m-1)]^2-4.(m-3)=(2m-2)^2-4m+12

=4m^2-8m+4-4m+12=4m^2-12m+16

=4(m^2-3m+4)=4.[m^2-2.3/2+(3/2)^2-(3/2)^2+4]

=4.[(m-3/2)^2+7/4]>0(với mọi m)=>Δ>0

Vậy phương trình có 2 nghiệm phân biệt với mọi m

=> x1=[2m-2+2.√(m-3)^2+7/4]/2(m-2)=[m-1+√(m-3)^2+7/4]/(m-2)

x2=[m-1-√(m-3)^2+7/4]/(m-2)

3 tháng 5 2021

cái này bạn áp dụng \(\Delta^'\) đk

17 tháng 4 2019

dầu tiên bn tìm đenta phẩy

sau đó cm nó lớn hơn 0

theo hệ thức viet tính đc x1+x2=... và x1*x2=....

thay vào hệ thức đã cho tính đc ..