\(b^2=b'a\) | \(c^2=c'a\) | \(\frac{b^2}{c^2}=\frac{b'}{c'}\) |
\(a^2=b^2+c^2\) | \(h^2=b'c'\) | |
\(ah=bc\) | \(\frac{1}{h^2}=\frac{1}{b^2}+\frac{1}{c^2}\) |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, đường cao AH. Khi đó ta có hệ thức
HA2 = HB.HC
Hay “Trong tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng Tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền”
Đáp án cần chọn là: B
Tâm của các đường tròn có bán kính 1cm tiếp xúc ngoài với đường tròn (O; 3cm) nằm trên đường tròn (O; 4cm).
Tâm của các đường tròn có bán kính 1cm tiếp xúc trong với đường tròn (O; 3cm) năm trên đường tròn (O; 2cm).
Nếu điểm M thuộc đường thẳng ax + by = c thì tọa độ (xo; yo) của điểm M là một nghiệm của phương trình ax + by = c.
Nếu điểm M thuộc đường thẳng ax + by = c thì tọa độ ( x 0 ; y 0 ) của điểm M là một nghiệm của phương trình ax + by = c.
Ta có :
- Khi 1 ≤ x ≤ 2 thì -6 ≤ y ≤ -1,5 ;
- Khi -2 ≤ x ≤ 0 thì -6 ≤ y ≤ 0 ;
- Khi -2 ≤ x ≤ 1 thì -6 ≤ y ≤ 0.