Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Cột thứ hai:
d2 = a2 + b2 = 52 + 122 = 25 + 144 = 169
Nên d = 13
Cột thứ ba:
a2 + b2 = d2 => a2 = d2 – b2=(√1010)2 - (√66)2
a2 = 10 – 6 = 4 => a = 2
Cột thứ tư:
a2 + b2 = d2 => b2 = d2 - a2 = 72 - (√1313)2
b2 = 49 – 13 = 36 => b = 6
Cột thứ hai:
d2 = a2 + b2 = 52 + 122 = 25 + 144 = 169
Nên d = 13
Cột thứ ba:
a2 + b2 = d2 => a2 = d2 – b2=(√1010)2 - (√66)2
a2 = 10 – 6 = 4 => a = 2
Cột thứ tư:
a2 + b2 = d2 => b2 = d2 - a2 = 72 - (√1313)2
b2 = 49 – 13 = 36 => b = 6
Giả sử \(ABCD\) là hình chữ nhật ; \(a\), \(b\), \(d\) lần lượt là độ dài của \(AB\), \(BC\), \(AC\)
Áp dụng định lý Pythagore vào \(\Delta ABC\) vuông tại \(B\) ta có:
\(A{C^2} = A{B^2} + B{C^2}\)
Do đó \({d^2} = {a^2} + {b^2}\) ; \({b^2} = {d^2} - {a^2}\); \({a^2} = {d^2} - {b^2}\)
Suy ra: \(d = \sqrt {{a^2} + {b^2}} \); \(b = \sqrt {{d^2} - {a^2}} \); \(a = \sqrt {{d^2} - {b^2}} \)
Với \(a = 8\); \(b = 6\) ta có: \(d = \sqrt {{8^2} + {6^2}} = \sqrt {64 + 36} = \sqrt {100} = 10\)
Với \(a = \sqrt {15} \); \(d = \sqrt {24} \) ta có: \(b = \sqrt {{{\sqrt {24} }^2} - {{\sqrt {15} }^2}} = \sqrt {24 - 15} = \sqrt 9 = 3\)
Với \(b = 5\); \(d = 13\) ta có: \(a = \sqrt {{{13}^2} - {5^2}} = \sqrt {169 - 25} = \sqrt {144} = 12\)
Theo định lý Py-ta-go :
\(d^2=a^2+b^2=3^2+5^2=34\)
hay \(d=\sqrt{34}\approx5,8\left(cm\right)\)
Giả sử hình chữ nhật ABCD có AB = a = 3cm; BC = b = 5cm; BD = d
Trong tam giác vuông ABC theo định lý Py-ta-go ta có:
d2=a2+b2⇒d2=32+52=9+25=34d=√34≈5,8(cm)
a) Hai đường thẳng song song với đường thẳng a và cách đường thẳng a một khoảng là 2cm.
b) Đường tròn O B C 2 với O là trung điểm của BC
c) Đường thẳng trung trực của đoạn BC trừ trung điểm BC.
Trong hình chữ nhật ABCD ta luôn có
Do đó áp dụng định lý Py-ta-go ta có: d2 = a2 + b2.
Vậy :
- Cột thứ hai:
d2 = a2 + b2 = 52 + 122 = 25 + 144 = 169 nên d = 13
- Cột thứ ba:
a2 + b2 = d2 ⇒ a2 = d2 – b2 = (√10)2 – (√6)2 = 4 nên a = 2
- Cột thứ tư:
a2 + b2 = d2 ⇒ b2 = d2 – a2 = 72 – (√13)2 = 36 nên b = 6.
Vậy ta có bảng sau: