Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=-1 vào (d), ta được:
\(y=\left(-1\right)\cdot\sqrt{2}+\sqrt{2}+1=-\sqrt{2}+\sqrt{2}+1=1=y_A\)
vậy: A(-1;1) thuộc (d)
Thay x=-2 vào (d), ta được:
\(y=\sqrt{2}\cdot\left(-2\right)+\sqrt{2}+1=-2\sqrt{2}+\sqrt{2}+1=-\sqrt{2}+1< >y_B\)
Vậy: \(B\left(-2;\sqrt{2}+1\right)\notin\left(d\right)\)
Thay \(x=\sqrt{2}-1\) vào (d), ta được:
\(y=\sqrt{2}\left(\sqrt{2}-1\right)+\sqrt{2}+1\)
\(=2-\sqrt{2}+\sqrt{2}+1=3=y_C\)
Vậy: \(C\left(\sqrt{2}-1;3\right)\in\left(d\right)\)
Thay \(x=2\sqrt{2}\) vào (d), ta được:
\(y=2\sqrt{2}\cdot\sqrt{2}+\sqrt{2}+1=4+\sqrt{2}+1=5+\sqrt{2}< >3+\sqrt{2}=y_D\)
Vậy: \(D\left(2\sqrt{2};3+\sqrt{2}\right)\notin\left(d\right)\)
a) Vì (d): y=ax+b//y=3x+1 nên \(\left\{{}\begin{matrix}a=3\\b\ne1\end{matrix}\right.\)
Suy ra: (d): y=3x+b
Thay x=2 và y=-2 vào (d), ta được:
\(3\cdot2+b=-2\)
\(\Leftrightarrow b=-8\)(thỏa ĐK)
Vậy: (d): y=3x-8
b) Để (d) vuông góc với y=2x+3 nên \(2a=-1\)
hay \(a=-\dfrac{1}{2}\)
Vậy: (d): \(y=\dfrac{-1}{2}x+b\)
Thay x=-3 và y=4 vào (d), ta được:
\(\dfrac{-1}{2}\cdot\left(-3\right)+b=4\)
\(\Leftrightarrow b+\dfrac{3}{2}=4\)
hay \(b=\dfrac{5}{2}\)
Vậy: (d): \(y=\dfrac{-1}{2}x+\dfrac{5}{2}\)
a, pt hoanh độ giao điểm cua 2 đg thẳng d1 và d2 la: 2x - 5 = 1 <=> x = 3
vậy tọa độ giao điểm cua d1 va d2 la A(3;1)
Để d1 , d2, d3 đồng quy thì d3 phải đi qua diem A(3;1)
Ta co pt: (2m - 3).3 - 1 = 1
<=> 6m - 9 -1 = 1
<=> 6m = 11 <=> m = 11/6
mấy bài còn lại tương tự nha
ta có \(\overrightarrow{AB}\left(3;-4\right)\Rightarrow\overrightarrow{u_{AB}}\left(4;3\right)\) \(\Rightarrow\left(AB\right):4x+3y-7=0\)
đặc \(C\left(x_c;y_c\right)\)
vì \(C\in\left(d\right):x-2y-1=0\Rightarrow x_c-2y_c-1=0\)...............(1)
ta lại có khoảng cách từ \(C\) đến đường thẳng \(AB\) là \(6\)
\(\Rightarrow\dfrac{\left|4x_c+3y_c-7\right|}{\sqrt{4^2+3^2}}=6\Leftrightarrow\left|4x_c+3y_c-7\right|=30\)
\(\Leftrightarrow\left[{}\begin{matrix}4x_c+3y_x-7=30...\left(2\right)\\4x_c+3y_c-7=-30...\left(3\right)\end{matrix}\right.\)
từ (1) và (2) ta có hệ phương trình : \(\left\{{}\begin{matrix}x_c-2y_c-1=0\\4x_c+3y_c-7=30\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_c=7\\y_c=3\end{matrix}\right.\) \(\Rightarrow C\left(7;3\right)\)
từ (1) và (3) ta có hệ phương trình : \(\left\{{}\begin{matrix}x_c-2y_c-1=0\\4x_c+3y_c-7=-30\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_c=\dfrac{-43}{11}\\y_c=\dfrac{-27}{11}\end{matrix}\right.\) \(\Rightarrow C\left(\dfrac{-43}{11};\dfrac{-27}{11}\right)\)
vậy có 2 điểm \(C\) thõa mãn điều kiện bài toán là \(C\left(7;3\right)\) và \(C\left(\dfrac{-43}{11};\dfrac{-27}{11}\right)\)
Thay tọa độ từng điểm vào phương trình đường thẳng ta thấy tọa độ điểm C thỏa mãn phương trình đường thẳng.
Chọn C (3 ; 3)