Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\text{) Gọi }M\left(m;m^2\right)\in P\)
\(d\left(M;Ox\right)=d\left(M;Oy\right)\Leftrightarrow\left|x_M\right|=\left|y_M\right|\)\(\Leftrightarrow\left|m\right|=\left|m^2\right|\Leftrightarrow m^2=m\text{ hoặc }m^2=-m\)
\(\Leftrightarrow m^2-m=0\text{ hoặc }m^2+m=0\)
\(\Leftrightarrow m=0\text{ hoặc }m=1\text{ hoặc }m=-1\)
\(\text{Kết luận: }M\left(0;0\right)\text{ hoặc }M\left(1;1\right)\text{ hoặc }M\left(-1;1\right)\)
\(b\text{) }A\in d\Rightarrow a+b=1\text{ (1)}\)
\(\text{Phương trình hoành độ giao điểm của }P\text{ và }d\text{ là: }x^2=ax+b\)
\(\Leftrightarrow x^2-ax-b=0\text{ (*)}\)
\(d\text{ là tiếp tuyến của }P\Leftrightarrow d\text{ giao }P\text{ tại 1 điểm duy nhất }\Leftrightarrow\left(\text{*}\right)\text{ có nghiệm kép }\)
\(\Leftrightarrow\Delta=a^2+4b=0\text{ (2)}\)
\(\left(1\right)\Leftrightarrow b=1-a;\text{ thay vào (2) ta được: }a^2+4\left(1-a\right)=0\)
\(\Leftrightarrow a^2-4a+4=0\Leftrightarrow\left(a-2\right)^2=0\Leftrightarrow a=2\)
\(\Rightarrow b=-1\)
\(\text{Vậy }a=2;\text{ }b=-1\)
a. Để d đi qua A; B
\(\Leftrightarrow\left\{{}\begin{matrix}5=2a+b\\-1=-a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
b. Theo câu a pt AB có dạng: \(y=2x+1\)
Thế tọa độ C vào pt AB ta được:
\(9=2.4+1\) (thỏa mãn)
Vậy C thuộc AB hay 3 điểm A;B;C thẳng hàng
c. Gọi M là tọa độ giao điểm của AB và Ox
\(\Rightarrow0=2x_M+1\Rightarrow x_M=-\dfrac{1}{2}\Rightarrow OM=\left|x_M\right|=\dfrac{1}{2}\)
Gọi N là giao điểm của AB và Oy
\(\Rightarrow y_N=2.0+1\Rightarrow y_N=1\Rightarrow ON=1\)
Gọi H là hình chiếu vuông góc của O lên AB \(\Rightarrow OH=d\left(O;AB\right)\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{OH^2}=\dfrac{1}{ON^2}+\dfrac{1}{OM^2}=\dfrac{1}{1^2}+\dfrac{1}{\left(\dfrac{1}{2}\right)^2}=5\)
\(\Rightarrow OH=\dfrac{\sqrt{5}}{5}\)
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
\(a,\) Pt hoành độ giao điểm
\(x=0\\ \Leftrightarrow y=-2\cdot0+3=3\\ \Leftrightarrow A\left(0;3\right)\)
Pt tung độ giao điểm
\(y=0\\ \Leftrightarrow0=-2x+3\Leftrightarrow x=\dfrac{3}{2}\\ \Leftrightarrow B\left(\dfrac{3}{2};0\right)\)
Câu 2:
Thay x=1 và y=1 vào y=ax+2, ta được:
\(a\cdot1+2=1\)
=>a+2=-1
=>a=-1
Vậy: Hệ số góc của đường thẳng d là -1
Câu 1:
Gọi A là tiếp điểm của tiếp tuyến kẻ từ M của (O)
=>MA\(\perp\)OA tại A
Ta có: ΔMAO vuông tại A
=>\(AM^2+AO^2=MO^2\)
=>\(AM^2=10^2-6^2=64\)
=>\(AM=\sqrt{64}=8\left(cm\right)\)
a/AB=3;BC=4;AC=5 =>AB vuông góc với BC . Gỉa sử N(a;b)=>AN=a^2+(1-b)^2 ; BN=a^2+(4-b)^2 xong rồi áp dụng pytago vao tam giac ABN ta có: a^2+(1-b)2-a^2-(4-b)2 <=> b=24 => a=0=> N(0;4). Rồi cậu thay tọa độ của N vào pt đường thẳng d tính được m= -12/5
Gọi tọa độ của M(c;d) . cậu tìm pt đường thẳng AD là y=-1/2x +1
vì M vừa thuộc AD vừa thuộc d nên lập hệ : d=-1/2c+1 ; d= -12/5c-5/3 (cậu tự tìm c,d nhé)
ta có \(\overrightarrow{AB}\left(3;-4\right)\Rightarrow\overrightarrow{u_{AB}}\left(4;3\right)\) \(\Rightarrow\left(AB\right):4x+3y-7=0\)
đặc \(C\left(x_c;y_c\right)\)
vì \(C\in\left(d\right):x-2y-1=0\Rightarrow x_c-2y_c-1=0\)...............(1)
ta lại có khoảng cách từ \(C\) đến đường thẳng \(AB\) là \(6\)
\(\Rightarrow\dfrac{\left|4x_c+3y_c-7\right|}{\sqrt{4^2+3^2}}=6\Leftrightarrow\left|4x_c+3y_c-7\right|=30\)
\(\Leftrightarrow\left[{}\begin{matrix}4x_c+3y_x-7=30...\left(2\right)\\4x_c+3y_c-7=-30...\left(3\right)\end{matrix}\right.\)
từ (1) và (2) ta có hệ phương trình : \(\left\{{}\begin{matrix}x_c-2y_c-1=0\\4x_c+3y_c-7=30\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_c=7\\y_c=3\end{matrix}\right.\) \(\Rightarrow C\left(7;3\right)\)
từ (1) và (3) ta có hệ phương trình : \(\left\{{}\begin{matrix}x_c-2y_c-1=0\\4x_c+3y_c-7=-30\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_c=\dfrac{-43}{11}\\y_c=\dfrac{-27}{11}\end{matrix}\right.\) \(\Rightarrow C\left(\dfrac{-43}{11};\dfrac{-27}{11}\right)\)
vậy có 2 điểm \(C\) thõa mãn điều kiện bài toán là \(C\left(7;3\right)\) và \(C\left(\dfrac{-43}{11};\dfrac{-27}{11}\right)\)