\(\dfrac{x}{2}\) = \(\dfrac{y}{5}\) và 2x + y = -18.Tìm x và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{2x+y}{2\cdot2+5}=\dfrac{18}{9}=2\)

Do đó: x=4; y=10

18 tháng 8 2017

a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)

\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)

Đến đây tự làm tiếp nhé

b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

=> x = 75, y = 50, z = 30

c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)

\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)

\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)

\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)

=> x=... , y=... , z=...

d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)

Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3

Với k = 3 => x = 6, y = 15

Với k = -3 => x = -6, y = -15

Vậy...

e, Tương tự câu d

18 tháng 8 2017

b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)

=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)

     \(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)

      \(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)

25 tháng 8 2017

a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{5}=\dfrac{y}{7}=\dfrac{y-2x}{7-5}=\dfrac{24}{2}=12\)

\(\Rightarrow2x=12\cdot5=60\Rightarrow x=60:2=30\)

\(y=12\cdot7=84\)

Vậy x = 30 ; y = 84

b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+3y}{3+2\cdot3}=\dfrac{18}{9}=2\)

\(\Rightarrow x=2\cdot3=6\)

\(y=2\cdot2=4\)

Vậy x = 6 ; y = 4

c. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

\(\Rightarrow x=2\cdot2=4\)

\(y=3\cdot2=6\)

\(z=4\cdot2=8\)

Vậy x = 4 ; y = 6 ; z = 8

d. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-y-z}{2-3-4}=\dfrac{15}{-5}=-3\)

\(\Rightarrow x=-3\cdot2=-6\)

\(y=-3\cdot3=-9\)

\(z=-3\cdot4=-12\)

Vậy \(x=-4;y=-6;z=-8\)

8 tháng 12 2018

Cậu không làm được hay cần gấp con nào nhỉ ?

Bài 1:

a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)

=>2x-10=x+2

=>x=12

b: \(\Leftrightarrow\left(x+2\right)^2=100\)

=>x+2=10 hoặc x+2=-10

=>x=-12 hoặc x=8

c: \(\Leftrightarrow\left(2x-5\right)^3=27\)

=>2x-5=3

=>2x=8

=>x=4

b: Ta có: x/y=7/9

nên x/7=y/9

=>x/49=y/63

Ta có: y/z=7/3

nên y/7=z/3

=>y/63=z/27

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)

Do đó: x=-735/13; y=-945/13; z=-405/13

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)

Do đó: x=14; y=40; z=64

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)

Do đó: x=24; y=15; z=6

17 tháng 11 2017

Ta có : 2x+1 /5 = 3y-2/7 = 2x+3y -1 /6x

=> 2x+1+3y-2 / 5+7 = 2x+3y-1 /6x

=> 2x+3y-1 / 12 = 2x+3y-1 / 6x

=> 12 = 6x => x =2

9 tháng 6 2017

\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)

=> 2(2x+1) = 6.7

4x+2=42

4x=40

x=10

Vậy x=10

a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\\ =>6.7=2.\left(2x+1\right)\\ =>2x+1=\dfrac{6.7}{2}=\dfrac{42}{2}=21\\ =>2x=21-1=20\\ =>x=\dfrac{20}{2}=10\)

b) \(\dfrac{24}{7x-3}=-\dfrac{4}{25}\\ =>24.25=-4.\left(7x-3\right)\\ =>7x-3=\dfrac{24.25}{-4}=-150\\ =>7x=-150+3=-147\\ =>x=\dfrac{-147}{7}=-21\)

c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=-\dfrac{12}{18}\\ =>x-6=\dfrac{4.18}{-12}=-6\\ =>x=-6+6=0\\ y=\dfrac{-12.24}{18}=-16\)

d) \(-\dfrac{1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\\ < =>-\dfrac{8}{40}\le-\dfrac{5x}{40}\le\dfrac{10}{40}\\ =>-8\le-5x\le10\\ Mà:-8< -5.1< -5.0< -5.\left(-1\right)< -5.\left(-2\right)=10\\ =>x\in\left\{-2;-1;0;1\right\}\)

e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\\ < =>\dfrac{x+46}{20}=\dfrac{5x+2}{5}\\ =>5\left(x+46\right)=20\left(5x+2\right)\\ < =>5x+230=100x+40\\ < =>230-40=100x-5x\\ < =>190=95x\\ =>x=\dfrac{190}{95}=2\)

f) \(y\dfrac{5}{y}=\dfrac{56}{y}\\ < =>\dfrac{y^2+5}{y}=\dfrac{56}{y}\\ =>y\left(y^2+5\right)=56y\\ =>y^2+5=\dfrac{56y}{y}=56\\ =>y^2=56-5=51\\ =>y=\sqrt{51}\)

11 tháng 9 2019

Tính chất của dãy tỉ số bằng nhau

b: 2x^3-1=15

=>2x^3=16

=>x=2

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)

=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)

=>y-25=32; z+9=50

=>y=57; z=41

d: 3/5x=2/3y

=>9x=10y

=>x/10=y/9=k

=>x=10k; y=9k

x^2-y^2=38

=>100k^2-81k^2=38

=>19k^2=38

=>k^2=2

TH1: k=căn 2

=>\(x=10\sqrt{2};y=9\sqrt{2}\)

TH2: k=-căn 2

=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)

3 tháng 10 2018
b,đặt k=x/5=y/3 x=5k;y=3k X^2-y^2=1600 Thay vào (5k)^2-(3k)^2=1600 => 25*k^2-9*k^2=1600 =>k^2*(25-9)=1600 =>k^2*16=1600 =>k^2=100 k=10 hoặc k=-10 Với k=10=>x=50,y=30 Với k=-10=>x=-50,y=-30
15 tháng 7 2017

\(\dfrac{x-2}{4}=\dfrac{y+1}{5}=\dfrac{z+3}{7}\)

\(\Rightarrow\dfrac{2\left(x-2\right)}{8}=\dfrac{y+1}{5}=\dfrac{2\left(z+3\right)}{14}\)

\(\Rightarrow\dfrac{2x-4}{8}=\dfrac{y+1}{5}=\dfrac{2z+6}{14}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(=\dfrac{2x-4+y+1-2z-6}{8+5-14}\)

\(=\dfrac{2x+y-2z-9}{-1}\)

\(=\dfrac{7-9}{-1}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-2}{4}=2\Rightarrow x-2=8\Rightarrow x=10\\\dfrac{y+1}{5}=2\Rightarrow y+1=10\Rightarrow y=9\\\dfrac{z+3}{7}=2\Rightarrow z+3=14\Rightarrow z=11\end{matrix}\right.\)

27 tháng 9 2017

Bài 1:

\(a,\dfrac{x}{3}=\dfrac{y}{7}\)\(x+y=20\)

\(=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)

\(\Rightarrow x=2.3=6\)

\(y=2.7=14\)

Vậy \(x=6\)\(y=14\)

\(b,\dfrac{x}{5}=\dfrac{y}{2}\)\(x-y=6\)

\(=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)

\(\Rightarrow x=2.5=10\)

\(y=2.2=4\)

Vậy \(x=10\)\(y=4\)

\(c,\dfrac{x}{7}=\dfrac{18}{14}\)

Từ tỉ lệ thức trên ta có:

\(14x=7.18\)

\(x=\dfrac{7.18}{14}\)

\(x=9\)

Vậy \(x=9\)

\(d,6:x=1\dfrac{3}{4}:5\)

\(6:x=\dfrac{7}{20}\)

\(x=6:\dfrac{7}{20}\)

\(x=\dfrac{120}{7}\)

Vậy \(x=\dfrac{120}{7}\)

\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(x-y+z=8\)

\(=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)

\(\Rightarrow x=2.2=4\)

\(y=2.4=8\)

\(z=2.6=12\)

Vậy \(x=4;y=8;z=12\)

27 tháng 9 2017

a, \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{1}{2}\)

Từ đó suy ra x=1,5; y=3,5

b,\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{1}{2}\)

Từ đó suy ra x=2,5; y=1

c,\(\dfrac{x}{7}=\dfrac{18}{14}\Leftrightarrow\dfrac{x}{7}=\dfrac{9}{7}\Rightarrow x=9\)

d,\(\dfrac{6}{x}=\dfrac{\dfrac{7}{4}}{5}\Leftrightarrow\dfrac{6}{x}=\dfrac{24}{7}\left(\dfrac{\dfrac{7}{4}}{5}\right)\Leftrightarrow\dfrac{6}{x}=\dfrac{6}{\dfrac{120}{7}}\Rightarrow x=\dfrac{120}{7}\)

e,\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{4}{3}\)

Từ đó suy ra x=\(\dfrac{8}{3}\); y=\(\dfrac{16}{3}\); z=\(\dfrac{32}{3}\)