Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,3^{2^3}=3^8>3^6=\left(3^2\right)^3\\ b,\left(-8\right)^9=\left(-2\right)^{27}< \left(-2\right)^{25}=\left(-32\right)^5\\ c,2^{21}=8^7< 9^7=3^{14}\\ 2,\)
\(a,\) Áp dụng tcdtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(b,\) Sửa: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow a=bk;c=dk\)
\(\Leftrightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2};\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\\ \LeftrightarrowĐpcm\)
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
\(a,Tacó:\\ \dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a^3}{2^3}=\dfrac{a\cdot a\cdot a}{2\cdot2\cdot2}=\dfrac{a\cdot b\cdot c}{2\cdot3\cdot5}=\dfrac{810}{30}=27\\ \Rightarrow\left\{{}\begin{matrix}a=27\cdot2=54\\b=27\cdot3=81\\c=27\cdot5=135\end{matrix}\right.\\ Vậy...\)
Các câu khác cx cùng dạng tương tự bn tự làm nha!
a, \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\) và a . b . c = 810
Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=k\)
=> \(\left\{{}\begin{matrix}a=2k\\b=3k\\c=5k\end{matrix}\right.\)
Mà a . b . c = 810
=> 2k . 3k . 5k = 810
=> 30\(k^3\) = 810
=> \(k^3=810:30\)
=> \(k^3=27\)
=> \(k^3=3^3\)
=> k = 3
=> \(a=2.3=6\)
\(b=3.3=9\)
\(c=5.3=15\)
Vậy .....
b, \(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{9}\)và a - 3b + 4c = 62
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{9}=\dfrac{a-3b+4c}{4-3.3+4.9}=\dfrac{62}{31}=2\)
=> \(\dfrac{a}{4}=2\Rightarrow a=8\)
\(\dfrac{b}{3}=2\Rightarrow b=6\)
\(\dfrac{c}{9}=2\Rightarrow c=18\)
Vậy .......
e: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x+5}{2}=\dfrac{y-2}{3}=\dfrac{x-y+5+2}{2-3}=\dfrac{10+7}{-1}=-17\)
=>x+5=-34; y-2=-51
=>x=-39; y=-49
g: Áp dụng tính chất của DTSBN, ta được
\(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}=\dfrac{5a-3b-4c-5-9+20}{5\cdot2-3\cdot4-6\cdot4}=\dfrac{-253}{13}\)
=>a-1=-506/13; b+3=-1012/13; c-5=-1518/13
=>a=-493/13; b=-1051/13; c=-1453/13
Lời giải:
e. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-(y-2)}{2-3}=\frac{(x-y)+5+2}{2-3}=\frac{10+5+2}{-1}=-17$
Suy ra:
$x+5=2(-17)=-34\Rightarrow x=-39$
$y-2=3(-17)=-51\Rightarrow y=-49$
f. Đề thiếu. Bạn xem lại
h. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}$
$=\frac{5a-5}{10}=\frac{3b+9}{12}=\frac{4c-20}{24}$
$=\frac{5a-5-(3b+9)-(4c-20)}{10-12-24}$
$=\frac{5a-3b-4c-5-9+20}{-26}=\frac{500-5-9+20}{-26}=\frac{-253}{13}$
Suy ra:
$a-1=2.\frac{-253}{13}\Rightarrow a=\frac{-493}{13}$
$b+3=4.\frac{-253}{13}\Rightarrow b=\frac{-1051}{13}$
$c-5=6.\frac{-253}{13}\Rightarrow c=\frac{-1453}{13}$
a) Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\)
\(\Leftrightarrow\dfrac{a}{8}=\dfrac{b}{12}\)(1)
Ta có: \(\dfrac{b}{4}=\dfrac{c}{5}\)
nên \(\dfrac{b}{12}=\dfrac{c}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\)
mà a+b+c=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{2}{35}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{2}{35}\\\dfrac{b}{12}=\dfrac{2}{35}\\\dfrac{c}{15}=\dfrac{2}{35}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{16}{35}\\b=\dfrac{24}{35}\\c=\dfrac{30}{35}=\dfrac{6}{7}\end{matrix}\right.\)
Vậy: \(a=\dfrac{16}{35}\); \(b=\dfrac{24}{35}\); \(c=\dfrac{6}{7}\)
b) Ta có: 2a=3b=5c
nên \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)
mà a+b-c=3
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b-c}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{3}{\dfrac{19}{30}}=\dfrac{90}{19}\)
Do đó:
\(\left\{{}\begin{matrix}2a=\dfrac{90}{19}\\3b=\dfrac{90}{19}\\5c=\dfrac{90}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{45}{19}\\b=\dfrac{30}{19}\\c=\dfrac{18}{19}\end{matrix}\right.\)
Vậy: \(a=\dfrac{45}{19}\); \(b=\dfrac{30}{19}\); \(c=\dfrac{18}{19}\)
Đặt a/3=b/5=k
=>a=3.k
=>a2=9.k2
=>b=5.k
=>b2=25.k2
Ta có: C= 5a2+3b2/10a2-3b2
=> c= 5.9.k2+3.25.k2/10.9.k2-3.25.k2
=> C= k2.(5.9+3.25) / k2.(9.10-3.25)
=> C= 120/15
=> C=8
Nếu đúng tick giúp mik nha
a) Ta có:
+) a/2=b/3
=>a=2b/3
+) b/5=c/4
=>c=4b/5
Lại có:
a-b+c=49
=> 2b/3 -b + 4b/5 =49
=> 7b/15==49
=> b= 105
Khi đó:
+) a=2b/3=2.105/3=70
+)c=4b/5=4.105/5=84
Vậy a=70; b=105; c=84...
chúc bạn học tốt
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{a}{3}=\dfrac{b}{8}=\dfrac{c}{5}=\dfrac{2a+3b-c}{6+24-5}=\dfrac{50}{25}=2\)
➩a=2.3=6
b=2.8=16
c=2.5=10
Vậy; a=6; b=16; c=10