\(\dfrac{9^{3} . 3^{2}}{3^{9}}\) . 2022

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

\(=\dfrac{3^9\cdot3^2}{3^9}\cdot2022=3^2\cdot2022=9\cdot2022=18198\)

6 tháng 10 2021

= 674 mà

2 tháng 12 2017

a) \(\dfrac{12}{\left(-2\right)^n}=\dfrac{-12}{8}\)

\(\Rightarrow12.8=\left(-2\right)^n.\left(-12\right)\)

\(\Rightarrow96=\left(-2\right)^n.\left(-12\right)\)

\(\Rightarrow\left(-2\right)^n=\dfrac{96}{-12}\)

\(\Rightarrow\left(-2\right)^n=-8\)

\(\Rightarrow\left(-2\right)^n=\left(-2\right)^3\)

\(\Rightarrow n=3\)

Vậy \(n=3\)

2 tháng 12 2017

2)

a) \(\dfrac{4}{9}\)\(\dfrac{5}{8}\) Mẫu chung: 72

\(\dfrac{4}{9}=\dfrac{4.8}{72}=\dfrac{32}{72}\)

\(\dfrac{5}{8}=\dfrac{5.9}{72}=\dfrac{45}{72}\)

\(\dfrac{32}{72}< \dfrac{45}{72}\)

Vậy \(\dfrac{4}{9}< \dfrac{5}{8}\)

b) \(-\sqrt{\dfrac{4}{9}}\)\(\dfrac{-3}{4}\) MTC: 12

\(-\sqrt{\dfrac{4}{9}}=-\sqrt{\left(\dfrac{2}{3}\right)^2}=-\dfrac{2}{3}=\dfrac{-2.4}{12}=\dfrac{-8}{12}\)

\(-\dfrac{3}{4}=\dfrac{-3.3}{12}=\dfrac{-9}{12}\)

\(\dfrac{-8}{12}>\dfrac{-9}{12}\)

Vậy \(-\sqrt{\dfrac{4}{9}}>\dfrac{-3}{4}\)

12 tháng 11 2018

\(\left(\dfrac{3^2.3^4}{6^5.9}\right)^4:\left(\dfrac{2^4}{64}\right)^{12}\)

=\(\left(\dfrac{3^4}{6^5}\right)^4:\left(\dfrac{16}{64}\right)^{12}\)

=\(\left(\dfrac{1}{96}\right)^4:\left(\dfrac{1}{4}\right)^{12}\)

=\(\dfrac{1}{96^4}:\dfrac{1}{4^{12}}\)

=\(\dfrac{4^{12}}{96^4}\)

7 tháng 1 2020

\(f\left(x\right)=4x^2+3x+1\)

\(g\left(x\right)=3x^2-2x+1.\)

a) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(\Rightarrow h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x+1\right)\)

\(\Rightarrow h\left(x\right)=4x^2+3x+1-3x^2+2x-1\)

\(\Rightarrow h\left(x\right)=\left(4x^2-3x^2\right)+\left(3x+2x\right)+\left(1-1\right)\)

\(\Rightarrow h\left(x\right)=x^2+5x.\)

b) Ta có \(h\left(x\right)=x^2+5x.\)

Đặt \(x^2+5x=0\)

\(\Rightarrow x.\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x=0\)\(x=-5\) là các nghiệm của đa thức \(h\left(x\right).\)

Chúc bạn học tốt!

8 tháng 1 2020

mơn nhéok

20 tháng 9 2017

Mấy bài dễ tự làm nhé:D

1)

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)

Ta có điều phải chứng minh

\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)

Ta có điều phải chứng minh

24 tháng 7 2017

\(\dfrac{72-x}{7}=\dfrac{x-4}{9}\)

\(\Rightarrow9\left(72-x\right)=7\left(x-4\right)\)

\(\Rightarrow648-9x=2x-28\)

\(\Rightarrow11x-28=648\)

\(\Rightarrow11x=676\Rightarrow x=\dfrac{676}{11}\)

\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)

\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)

\(\Rightarrow259-7x=3x+39\)

\(\Rightarrow10x+39=259\)

\(\Rightarrow10x=220\Rightarrow x=22\)

\(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)

\(\Rightarrow\left(x+4\right)^2=100\)

\(\Rightarrow\left(x+4\right)^2=\pm10^2\)

\(\Rightarrow\left[{}\begin{matrix}x+4=10\Rightarrow x=6\\x+4=-10\Rightarrow x=-14\end{matrix}\right.\)

\(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)

\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\)

\(\Rightarrow x\left(x+3\right)-1\left(x+3\right)=x\left(x+2\right)-2\left(x+2\right)\)

\(\Rightarrow x^2+3x-x-3=x^2+2x-2x-4\)

\(\Rightarrow x^2+2x-3=x^2-4\)

\(\Rightarrow2x-3=-4\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=-\dfrac{1}{2}\)

bài 2:

Gọi phân số cần tìm là \(\frac{7}{x}\)(x≠0)

Ta có: \(-\frac{9}{10}< \frac{7}{x}< -\frac{9}{11}\)

\(\Leftrightarrow\frac{63}{-70}< \frac{63}{9x}< \frac{63}{-77}\)

\(\Leftrightarrow-77< 9x< -70\)

Vì 9x là bội của 9 và trong dãy số nguyên từ -77 tới -70 chỉ có số -72 là bội của 9 nên 9x=-72

hay x=-8

Vậy: phân số cần tìm là \(\frac{7}{-8}\)

Bài 3:

A=|x+1|+5

Ta có: \(\left|x+1\right|\ge0\forall x\)

\(\Rightarrow\left|x+1\right|+5\ge5\forall x\)

Dấu '=' xảy ra khi

\(\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy: Giá trị nhỏ nhất của đa thức A=|x+1|+5 là 5 khi x=-1

b) Ta có: \(B=\frac{x^2+15}{x^2+3}\)

\(=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)

Ta có: \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2+3\ge3\forall x\)

\(\Rightarrow\frac{1}{x^2+3}\le\frac{1}{3}\forall x\)

\(\Rightarrow\frac{12}{x+3}\le4\forall x\)

\(\Rightarrow1+\frac{12}{x+3}\le5\forall x\)

Dấu '=' xảy ra khi

\(\frac{12}{x+3}=4\Leftrightarrow x+3=\frac{12}{4}=3\)\(\Leftrightarrow x=3-3=0\)

Vậy: giá trị lớn nhất của biểu thức \(B=\frac{x^2+15}{x^2+3}\) là 5 khi x=0

16 tháng 10 2018

\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)

\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(2,\)

\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)

\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)

\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)

\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)

\(=\dfrac{3^5.2^{10}}{5^{20}}\)

\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)

\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)

\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)

\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

\(3,\)

\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)

\(b,\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)

\(c,5^{x+2}=628\)

\(5^{x+2}=5^4\)

\(\Rightarrow x+2=4\)

\(\Rightarrow x=4-2=2\)

Vậy \(x=2\)

\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

16 tháng 10 2018

Bài 1:

B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)

2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)

⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)

B= 1

Vậy B=1

Bài 2:

a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)

b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)

d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

Bài 3:

a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)

\(2x+4=\dfrac{1}{2}\)

\(2x=\dfrac{1}{2}-4\)

\(2x=-\dfrac{7}{2}\)

\(x=-\dfrac{7}{2}:2\)

\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)

\(x=-\dfrac{7}{4}\)

b, \(\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2\)

\(2x-3=6\)

\(2x=9\)

\(x=\dfrac{9}{2}\)

c, \(5^{x+2}=625\)

\(5^{x+2}=5^4\)

\(x+2=4\)

\(x=2\)

24 tháng 12 2017

\(\dfrac{3}{x}=2:\dfrac{9}{10}\Rightarrow\dfrac{3}{x}=\dfrac{20}{9}\Rightarrow x=3:\dfrac{20}{9}=\dfrac{27}{20}\)

24 tháng 12 2017

\(\dfrac{-2}{\dfrac{3}{x}}=\dfrac{9}{10}\Leftrightarrow x=\dfrac{-2}{3}:\dfrac{9}{10}\Leftrightarrow x=\dfrac{-20}{27}\)