Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(L=\left(x-1\right)^2+\left(x+5\right)^2\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+5\right)^2\ge0\end{cases}}\)
\(\Rightarrow L=0\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(x+5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\x=-5\end{cases}}\left(L\right)\)
Vậy đa thức L vô nghiệm
d) \(M=x^2-5x-6\)
\(\Leftrightarrow M=x^2-6x+x-6\)
\(\Leftrightarrow M=x\left(x-6\right)+\left(x-6\right)\)
\(\Leftrightarrow M=\left(x+1\right)\left(x-6\right)\)
M = 0 \(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\)
Vậy đa thức M có hai nghiệm là -1 hoặc 6
1.
a, (x-5)2
Ta có x2 luôn \(\ge\) 0 với mọi x, suy ra: (x-5)2 \(\ge\) 0 với mọi x
Nên: (x-5)2 \(\ge\) 0 với mọi x
Suy ra: đa thức này không có nghiệm.
\(f\left(x\right)=4x^2+3x+1\)
\(g\left(x\right)=3x^2-2x+1.\)
a) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Rightarrow h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x+1\right)\)
\(\Rightarrow h\left(x\right)=4x^2+3x+1-3x^2+2x-1\)
\(\Rightarrow h\left(x\right)=\left(4x^2-3x^2\right)+\left(3x+2x\right)+\left(1-1\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x.\)
b) Ta có \(h\left(x\right)=x^2+5x.\)
Đặt \(x^2+5x=0\)
\(\Rightarrow x.\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-5\) là các nghiệm của đa thức \(h\left(x\right).\)
Chúc bạn học tốt!
mơn nhé