Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 5932 + 6001 × 5931 / 5932 × 6001 - 69
B = 5932 + 6001 × 5931 / (5931 + 1) × 6001 - 69
B = 5932 + 6001 × 5931 / 5931 × 6001 + (6001 - 69)
B = 5932 + 6001 × 5931 / 5931 × 6001 + 5932
B = 1
\(\frac{5932+6001x5931}{5932x6001-69}\)
\(=\frac{6001+6001x5931-69}{5932x6001-69}\)
\(=\frac{6001x\left(1+5931\right)-69}{5932x6001-69}\)
\(=\frac{6001x5932-69}{5932x6001-69}\)
\(=1\)
\(\frac{5932+6001\times5931}{5932\times6001-69}\)
\(=\frac{5932+6001\times5931}{\left(5931+1\right)\times6001-69}\)
\(=\frac{5932+6001\times5931}{5931\times6001+6001-69}\)
\(=\frac{5932+6001\times5931}{5931\times6001+5932}\)
\(=1\)
~ Study Well ~
a . 254 x 399 - 145 / 254 + 399 x 253 = ( 253 + 1 ) x 399 - 145 / 254 + 399 x 253
= 253 x 399 + 1 x 399 - 145 / 254 + 399 x 253
=253 x 399 + 399 - 145 / 254 + 399 x 253
= 253 x 399 + ( 399 - 145) / 254 + 399 x 253
= 253 x 399 + 254 / 254 + 399 x 253
= 1
b. 1997 x 1996 - 995 / 1995 x 1997 + 1002 = 1997 x ( 1995 + 1 ) - 995 / 1995 x 1997 + 1002
= 1997 x 1995 + 1997 - 1995 / 1995 x 1997 + 1002
= 1997 x 1995 + ( 1997 - 995 ) / 1995 x1997 + 1002
= 1997 x1995 + 1002 / 1995 x 1997 + 1002
= 1
c. 5932 + 6001 x 5031 / 5932 x 6001 - 69 = 5932 + 6001 x 5031 / ( 5031 + 1 ) x 6001 - 69
= 5932 + 6001 x 5031 / 5031 x 6001 + 6001 - 69
= 5932 + 6001 x 5031 / 5031 x 6001 + ( 6001 - 69 )
= 5932 + 6001 x 5031 / 5031 x 6001 + 5932
= 1
d. 1995 x 1997 - 1 / 1996 x 1995 + 1994 = 1995 x ( 1996 + 1 ) - 1 / 1996 x 1995 + 1994
= 1995 x1996 + 1995 - 1 / 1996 x 1995 + 1994
= 1995 x 1996 + ( 1995 - 1 ) / 1996 x 1995 + 1994
= 1995 x 1996 + 1994 / 1996 x 1995 + 1994
= 1
Lời giải:
$A=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+....+\frac{69}{7^{70}}$
$7A=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$
$\Rightarrow 6A=7A-A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{69}}-\frac{69}{7^{70}}$
$42A=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$
$\Rightarrow 36A=42A-6A=1-\frac{69}{7^{69}}+\frac{69}{7^{70}}<1$
$\Rightarrow A< \frac{1}{36}$
Sửa đề:
Nếu:
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{69^{2015}+1}{69^{2017}+1}< 1\)
\(B< \dfrac{69^{2015}+1+68}{69^{2017}+1+68}\Leftrightarrow B< \dfrac{69^{2015}+69}{69^{2017}+69}\)
\(B< \dfrac{69\left(69^{2014}+1\right)}{69\left(69^{2016}+1\right)}\Leftrightarrow B< \dfrac{69^{2014}+1}{69^{2016}+1}=A\)
\(B< A\)
\(a.\)
\(\dfrac{17}{8}:\left(\dfrac{27}{8}+\dfrac{11}{2}\right)\)
\(=\dfrac{17}{8}:\left(\dfrac{27+44}{8}\right)=\dfrac{17}{8}:\dfrac{71}{8}=\dfrac{17}{8}\cdot\dfrac{8}{71}=\dfrac{17}{71}\)
\(b.\)
\(\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\left(\dfrac{8}{15}-\dfrac{69}{60}\cdot\dfrac{5}{23}\right):\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\left(\dfrac{8}{15}-\dfrac{1}{4}\right):\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\left(\dfrac{8\cdot4-15}{60}\right):\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\dfrac{17}{60}:\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{16}\cdot3+\dfrac{17}{60}\cdot\dfrac{54}{51}\)
\(=\dfrac{7}{20}+\dfrac{3}{10}\)
\(=\dfrac{7+3\cdot2}{20}=\dfrac{13}{20}\)
Lời giải:
$S=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+...+\frac{69}{7^{70}}$
$7S=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$
$6S=7S-S=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}}$
$42S=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$
$\Rightarrow 42S-6S=(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}})-(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}})$
$\Rightarrow 36S=1-\frac{69}{7^{69}}-\frac{1}{7^{69}}+\frac{69}{7^{70}}$
Hay $36S=1-\frac{69.7-7-69}{7^{70}}=1-\frac{407}{7^{70}}$
$\Rightarrow S=\frac{1}{36}(1-\frac{407}{7^{70}})$
\(\dfrac{5932+6001.\left(5932-1\right)}{5932.6001-69}=\dfrac{5932+6001.5932-6001}{5932.6001-69}=\dfrac{6001.5932-69}{5932.6001-69}=1\)
\(\dfrac{5932+6001.5931}{5932.6001-69}\)
\(=\dfrac{5932+6001.5931}{\left(5931+1\right).6001-69}\)
\(=\dfrac{5932+6001.5931}{5931.6001+6001-69}\)
\(=\dfrac{5932}{6001-69}\)
\(=\dfrac{5932}{5932}\)
\(=1\)
P/s : Mình làm có chút vắn tắt. Xin bạn thông cảm