Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) gọi biểu thức là S = 2 + 2\(^2+2^3+.....+2^{50}\)
2S=2\(^2+2^3+2^4+......+2^{50}+2^{51}\)
\(2S-S=S=2^{51}-2\)
b) \(1+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{10}}\)
= \(2+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^9}\)
2S-S=S=(\(2+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^9}\))-( \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\))
bạn tự tìm S nhé
mink làm được như thế đó, phần a mink không muốn nhấn mỏi tay bạn ạ, đừng nghĩ mink ko biết làm nha
1; 5.22 + (\(x\) + 3) = 52
5.4 + (\(x\) + 3) = 25
20 + (\(x\) + 3) = 25
\(x\) + 3 = 25 - 20
\(x+3\) = 5
\(x\) = 5 - 3
\(x\) = 2
Vậy \(x=2\)
2; 23 + (\(x\) - 32) = 53 - 43
8 + (\(x\) - 9) = 125 - 64
8 + (\(x\) - 9) = 61
\(x\) - 9 = 61 - 8
\(x\) - 9 = 53
\(x\) = 53 + 9
\(x\) = 62
Vậy \(x\) = 62
p: \(F=\dfrac{1}{3}\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+\dfrac{3}{9\cdot12}+...+\dfrac{3}{30\cdot33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)
n: \(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
m: \(=\left(3-\dfrac{7}{3}+\dfrac{1}{4}\right):\left(4-\dfrac{31}{6}+\dfrac{9}{4}\right)\)
\(=\dfrac{36-28+3}{12}:\dfrac{48-62+27}{12}\)
\(=\dfrac{11}{13}\)
a: =-1/3+1/3=0
b: \(=\dfrac{4}{11}\left(-\dfrac{2}{7}-\dfrac{4}{7}-\dfrac{1}{7}\right)=\dfrac{4}{11}\cdot\left(-1\right)=-\dfrac{4}{11}\)
c: \(=10+\dfrac{5}{9}-3-\dfrac{5}{7}-4-\dfrac{5}{9}=3-\dfrac{5}{7}=\dfrac{16}{7}\)
d: \(=\dfrac{1}{3}+\dfrac{7}{4}-\dfrac{7}{4}+\dfrac{4}{5}=\dfrac{1}{3}+\dfrac{4}{5}=\dfrac{5+12}{15}=\dfrac{17}{15}\)
a: =-1/3+1/3=0
b: =411(−27−47−17)=411⋅(−1)=−411=411(−27−47−17)=411⋅(−1)=−411
c: =10+59−3−57−4−59=3−57=167=10+59−3−57−4−59=3−57=167
d: =13+74−74+45=13+45=5+1215=1715
a) Ta có: \(-3\dfrac{1}{4}\cdot x-75\%+\dfrac{3x}{2}=-1.2:\dfrac{-9}{10}-1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{-13x}{4}-\dfrac{3}{4}+\dfrac{3x}{2}=\dfrac{-6}{5}\cdot\dfrac{10}{-9}-\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{-13x-3+6x}{4}=\dfrac{4}{3}-\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{-7x-3}{4}=\dfrac{1}{12}\)
\(\Leftrightarrow-7x-3=\dfrac{1}{3}\)
\(\Leftrightarrow-7x=\dfrac{10}{3}\)
hay \(x=-\dfrac{10}{21}\)
b) Ta có: \(\dfrac{5}{3}+\dfrac{5}{15}+\dfrac{5}{35}+...+\dfrac{5}{x\left(x+2\right)}=2\dfrac{8}{17}\)
\(\Leftrightarrow\dfrac{5}{2}\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{x\left(x+2\right)}\right)=2\dfrac{8}{17}\)
\(\Leftrightarrow\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=2+\dfrac{8}{17}\)
\(\Leftrightarrow\left(1-\dfrac{1}{x+2}\right)=\dfrac{42}{17}:\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{x+1}{x+2}=\dfrac{42}{17}\cdot\dfrac{2}{5}=\dfrac{84}{85}\)
\(\Leftrightarrow85x+85=84x+168\)
\(\Leftrightarrow x=83\)
a. Ta có : 2,5 < 5,2 => 2,53 < 5,23
b. Ta có : 45 = 1024 ; 54 = 625
Vì 1024 > 625 => 45 > 54
\(a.2.5^3va5.2^3\)
\(2.5^3=2.125=250;5.2^3=5.8=40\)
Vì \(250>40\)
\(\Rightarrow2.5^3>5.2^3\)
\(b.4^5va5^4\)
\(4^5=1024;5^4=625\)
Vì \(1024>625\)
\(\Rightarrow4^5>5^4\)
\(c.2^8va2.5^3\)
\(2^8=256;2.5^3=2.125=250\)
Vì \(256>250\)
\(\Rightarrow2^8>2.5^3\)
2.Tìm x:
\(a.2^n+4.2^n=5.2^5\)
\(2^n\left(1+4\right)=5.32\)
\(2^n.5=160\)
\(2^n=160:5\)
\(2^n=32\)
\(2^n=2^5\)
\(\Rightarrow n=5\)
\(b.3^4.3^n:9=3^7\)
\(3^4.3^n:3^2=3^7\)
\(3^4.3^n=3^7.3^2\)
\(3^4.3^n=3^{7+2}\)
\(3^4.3^n=3^9\)
\(3^n=3^9:3^4\)
\(3^n=3^{9-4}\)
\(3^n=3^5\)
\(\Rightarrow n=5\)
\(c.6.2^n+3.2^n=9.2^n\)
\(2^n\left(6+3\right)=9.2^n\)
\(2^n.9=9.2^n\)
\(\Rightarrow2^n=9:9\)
\(\Rightarrow2^n=1\)
\(\Rightarrow2^n=2^0\)
\(\Rightarrow n=0\)
Chúc bạn học tốt!
Ta có: \(A=\dfrac{5\cdot\left(2^2\cdot3^2\right)^9\cdot\left(2^2\right)^6-2\cdot\left(2^2\cdot3\right)^{14}\cdot3^4}{5\cdot2^{28}\cdot3^{18}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{5\cdot2^{18}\cdot3^{18}\cdot2^{12}-2\cdot2^{28}\cdot3^{14}\cdot3^4}{5\cdot2^{28}\cdot3^{18}-7\cdot2^{28}\cdot3^{18}\cdot2}\)
\(=\dfrac{5\cdot2^{30}\cdot3^{18}-2\cdot2^{28}\cdot3^{18}}{2^{28}\cdot3^{18}\cdot\left(5-7\cdot2\right)}\)
\(=\dfrac{2^{28}\cdot3^{18}\cdot\left(5\cdot2^2-2\right)}{2^{28}\cdot3^{18}\cdot\left(5-14\right)}\)
\(=\dfrac{20-2}{-9}=\dfrac{18}{-9}=-2\)