\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{100}}+\dfrac{1}{5^{101}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2022

Đặt `B=1/5+1/5^{2}+1/5^{3}+...+1/5^{101}`

`<=>5B=1+1/5+1/5^{2}+...+1/5^{100}`

`<=>5B-B=(1+1/5+1/5^{2}+...+1/5^{100})-(1/5+1/5^{2}+...+1/5^{101})`

`<=>5B-B=1+1/5+1/5^{2}+...+1/5^{100}-1/5-1/5^{2}-...-1/5^{101}`

`<=>4B=1-1/5^{101}`

`<=>B=(1-1/5^{101})/4`

`@Shả`

14 tháng 4 2022

\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{101}}\)

\(5A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{100}}\)

\(5A-A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{100}}-\dfrac{1}{5}-\dfrac{1}{5^2}-...-\dfrac{1}{5^{101}}=1-\dfrac{1}{5^{101}}\Rightarrow A=\dfrac{1-\dfrac{1}{5^{101}}}{4}\)

6 tháng 5 2017

Ta có :

\(D=\dfrac{1}{5}-\dfrac{1}{5^2}+\dfrac{1}{5^3}-\dfrac{1}{5^4}+\dfrac{1}{5^5}-..........-\dfrac{1}{5^{100}}+\dfrac{1}{5^{101}}\)

\(5D=1-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+\dfrac{1}{5^4}-\dfrac{1}{5^5}+..........+\dfrac{1}{5^{100}}\)

\(5D+D=\left(1-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+.........+\dfrac{1}{5^{100}}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5^2}+..............-\dfrac{1}{5^{100}}+\dfrac{1}{5^{101}}\right)\)\(6D=1-\dfrac{1}{5^{101}}\)

\(D=\dfrac{1-\dfrac{1}{5^{101}}}{6}\)

8 tháng 4 2017

câu 3 tôi làm đc đó

15 tháng 4 2017

2P=\(\dfrac{2}{2}+\dfrac{2}{2^2}+...+\dfrac{2}{2^{100}}\)

2P=\(1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)

2P-P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)

P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)

24 tháng 4 2017

\(P=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)

\(2P=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)\(\)

\(2P-P=1-\dfrac{1}{2^{100}}\)

\(P=\dfrac{2^{100}}{2^{100}}-\dfrac{1}{2^{100}}\)

\(P=\dfrac{2^{100}-1}{2^{100}}\)

1: =>7/3x=3+1/3-8-2/3=-5-1/3=-16/3

=>x=-16/3:7/3=-7/16

2: =>1/3|x-2|=4/5+3/7=28/35+15/35=43/35

=>|x-2|=129/35

=>x-2=129/35 hoặc x-2=-129/35

=>x=199/35 hoặc x=-59/35

6 tháng 5 2017

tự xử đi

6 tháng 5 2017

mk ăn mày lun ak

2 tháng 5 2017

Đặt N=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+......+\dfrac{1}{5^{100}}\)

5N=\(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+..........+\dfrac{1}{5^{99}}\)

5N-N= \(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+.............+\dfrac{1}{5^{99}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+..........+\dfrac{1}{5^{100}}\right)\)

4N=1-\(\dfrac{1}{5^{100}}\) =\(\dfrac{5^{100}-1}{5^{100}}\)

N=\(\dfrac{5^{100}-1}{4.5^{100}}\)

Thay N vào D ,ta có

D= 4.5\(^{100}\).(\(\dfrac{5^{100}-1}{4.5^{100}}\) )+1

D=5\(^{100}\)

Vậy D =5\(^{100}\)

thank nha, "Thiên Nhi"vuivuivui

9 tháng 4 2017

cau 1

de a dat gia tri lon nhat suy ra5a-17/4a-23 lon nhat

suy ra 4a-23 phai nho nhat khac 0 va la so nguyen duong

suy ra 4a-23=1

suy ra 4a=1+23=24

suy ra a=24 chia 4=6

vay de a nho nhat thi a=6

5 tháng 9 2022

Ta có : M . N = \(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{100}{101}\) 

\(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{100}{101}\) 

\(\dfrac{1}{101}\) 

Vậy M . N = \(\dfrac{1}{101}\)

30 tháng 3 2018

b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)

Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhéhaha

30 tháng 3 2018

cảm ơn bạn