\(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow2\left(\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1005}{1006}\)

\(\Leftrightarrow\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1005}{2012}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{-251}{1006}\)

=>x+1=-1006/251

hay x=-1257/251

21 tháng 3 2017

a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)

\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)

\(\Leftrightarrow8x=-\frac{5}{4}\)

\(\Leftrightarrow x=-\frac{5}{32}\)

c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(\Leftrightarrow x+1=2003\)

\(\Leftrightarrow x=2002\)

31 tháng 8 2017

\(a,\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.3.\left[\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left[\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left[\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left(\dfrac{1}{5-1}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)

\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{101}{1540}.\dfrac{1}{3}\)

\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{3}-\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{308}\)

\(\Rightarrow x+3=308\)

\(x=308-3\)

\(x=305\)

\(b,1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(x+1\right):2}=1\dfrac{1991}{1993}\)

\(\dfrac{1}{2}.\left(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{x.\left(x+1\right):2}\right)=\dfrac{3984}{3986}\)

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{8}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(\dfrac{2-1}{1.2}+\dfrac{4-3}{3.4}+...+x+1-\dfrac{x}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{3984}{3986}\)

\(1-\dfrac{1}{x+1}=\dfrac{3984}{3986}\)

\(\dfrac{1}{x+1}=1-\dfrac{3984}{3986}\)

\(\dfrac{1}{x+1}=\dfrac{1}{1993}\)

=>\(x+1=1993\)

\(x=1993-1\)

\(x=1992\)

bài hay đấy để mk thử giải

à bạn xem lại câu a hộ mk với

Tính nhanh theo mẫu: Mẫu: \(B=\left(1+\dfrac{1}{3}\right)\)x \(\left(1+\dfrac{1}{8}\right)\)x \(\left(1+\dfrac{1}{15}\right)\)x \(\left(1+\dfrac{1}{24}\right)\)x ..... x \(\left(1+\dfrac{1}{120}\right)\)x \(\left(1+\dfrac{1}{413}\right)\) \(B=\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\)x \(\left(\dfrac{8}{8}+\dfrac{1}{8}\right)\)x \(\left(\dfrac{15}{15}+\dfrac{1}{15}\right)\)x \(\left(\dfrac{24}{24}+\dfrac{1}{24}\right)\)x........x\(\left(\dfrac{120}{120}+\dfrac{1}{120}\right)\)x...
Đọc tiếp

Tính nhanh theo mẫu:

Mẫu: \(B=\left(1+\dfrac{1}{3}\right)\)x \(\left(1+\dfrac{1}{8}\right)\)x \(\left(1+\dfrac{1}{15}\right)\)x \(\left(1+\dfrac{1}{24}\right)\)x ..... x \(\left(1+\dfrac{1}{120}\right)\)x \(\left(1+\dfrac{1}{413}\right)\)

\(B=\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\)x \(\left(\dfrac{8}{8}+\dfrac{1}{8}\right)\)x \(\left(\dfrac{15}{15}+\dfrac{1}{15}\right)\)x \(\left(\dfrac{24}{24}+\dfrac{1}{24}\right)\)x........x\(\left(\dfrac{120}{120}+\dfrac{1}{120}\right)\)x \(\left(\dfrac{143}{143}+\dfrac{1}{143}\right)\)

\(B=\dfrac{4}{3}\)x\(\dfrac{9}{8}\)x\(\dfrac{16}{15}\)x\(\dfrac{25}{24}\)x.......x\(\dfrac{121}{120}\)x \(\dfrac{144}{143}\)

\(B=\dfrac{2x2}{1x3}\)x\(\dfrac{3x3}{2x4}\)x\(\dfrac{4x4}{3x5}\)x\(\dfrac{5x5}{4x6}\)x.......x\(\dfrac{11x11}{10x12}\)x\(\dfrac{12x12}{13x11}\)

\(B=\dfrac{2x3x4x5x......x10x11x12}{1x2x3x......x10x11x12}\)x \(\dfrac{2x3x4x5x....x11x12}{3x4x5x6x......x12x13}\)

B= \(\dfrac{12}{1}\)x\(\dfrac{2}{13}\)

B=\(\dfrac{24}{13}\)

Câu hỏi:

\(B=\left(1+\dfrac{1}{8}\right)\)x\(\left(1+\dfrac{1}{15}\right)\)x\(\left(1+\dfrac{1}{24}\right)\)x..... x \(\left(1+\dfrac{1}{440}\right)\)x \(\left(1+\dfrac{1}{483}\right)\)

3
24 tháng 6 2017

\(B=\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\left(1+\dfrac{1}{24}\right).....\left(1+\dfrac{1}{440}\right)\left(1+\dfrac{1}{483}\right)\)

\(B=\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}.....\dfrac{441}{440}.\dfrac{484}{483}\)

\(B=\dfrac{9.16.25.....441.484}{8.15.24.....440.483}\)

\(B=\dfrac{3.3.4.4.5.5.....21.21.22.22}{2.4.3.5.4.6.....20.22.21.23}\)

\(B=\dfrac{3.4.5.....21.22}{2.3.4.....20.21}.\dfrac{3.4.5.....21.22}{4.5.6.....22.23}\)

\(B=11.\dfrac{3}{23}=\dfrac{33}{23}\)

24 tháng 6 2017

B = \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}...\dfrac{121}{120}.\dfrac{144}{143}\)

B = \(\dfrac{4.9.16.25...121.144}{3.8.15.24....120.143}\)

B = \(\dfrac{2.2.3.3.4.4.5.5...11.11.12.12}{1.3.2.4.3.5.4.6...10.12.11.13}\)

B = \(\dfrac{2.3.4.5...11.12}{1.2.3.4.5...10.11}.\dfrac{2.3.4.5...11.12}{3.4.5.6.7...12.13}\)

B = 12 . \(\dfrac{2}{13}\)

B = \(\dfrac{24}{13}\)

31 tháng 7 2017

1.Tính hợp lý:

a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65

30 tháng 7 2017

Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6

2 tháng 5 2017

a) \(\left(2x-3\right)\left(6-2x\right)=0\)

\(\circledast\)TH1: \(2x-3=0\\ 2x=0+3\\ 2x=3\\ x=\dfrac{3}{2}\)

\(\circledast\)TH2: \(6-2x=0\\ 2x=6-0\\ 2x=6\\ x=\dfrac{6}{2}=3\)

Vậy \(x\in\left\{\dfrac{3}{2};3\right\}\).

b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)

\(\dfrac{1}{3}x=0-\dfrac{2}{5}\left(x-1\right)\)

\(\dfrac{1}{3}x=-\dfrac{2}{5}\left(x-1\right)\)

\(-\dfrac{2}{5}-\dfrac{1}{3}=-x\left(x-1\right)\)

\(-\dfrac{11}{15}=-x\left(x-1\right)\)

\(\Rightarrow x=1.491631652\)

Vậy \(x=1.491631652\)

c) \(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)

\(\circledast\)TH1: \(3x-1=0\\ 3x=0+1\\ 3x=1\\ x=\dfrac{1}{3}\)

\(\circledast\)TH2: \(-\dfrac{1}{2}x+5=0\\ -\dfrac{1}{2}x=0-5\\ -\dfrac{1}{2}x=-5\\ x=-5:-\dfrac{1}{2}\\ x=10\)

Vậy \(x\in\left\{\dfrac{1}{3};10\right\}\).

d) \(\dfrac{x}{5}=\dfrac{2}{3}\\ x=\dfrac{5\cdot2}{3}\\ x=\dfrac{10}{3}\)

Vậy \(x=\dfrac{10}{3}\).

e) \(\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\\ \)

\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{1}{2}\)

\(\dfrac{x}{3}=\dfrac{7}{10}\)

\(x=\dfrac{3\cdot7}{10}\)

\(x=\dfrac{21}{10}\)

Vậy \(x=\dfrac{21}{10}\).

f) \(\dfrac{x}{5}-\dfrac{1}{2}=\dfrac{6}{10}\)

\(\dfrac{x}{5}=\dfrac{6}{10}+\dfrac{1}{2}\)

\(\dfrac{x}{5}=\dfrac{11}{10}\)

\(x=\dfrac{5\cdot11}{10}\)

\(x=\dfrac{55}{10}=\dfrac{11}{2}\)

Vậy \(x=\dfrac{11}{2}\).

g) \(\dfrac{x+3}{15}=\dfrac{1}{3}\\ x+3=\dfrac{15}{3}=5\\ x=5-3\\ x=2\)

Vậy \(x=2\).

h) \(\dfrac{x-12}{4}=\dfrac{1}{2}\\ x-12=\dfrac{4}{2}=2\\ x=2+12\\ x=14\)

Vậy \(x=14\).

5 tháng 8 2018

a, (x + 1) + (x + 4) + ... + (x + 28) = 155

x + 1 + x + 4 + ... + x + 28 = 155

(x + x + x + ... + x) + (1 + 4 + ... + 28) = 155

x . 10 + 145 = 155

x . 10 = 155 - 145

x . 10 = 10

x = 10 : 10

x = 1

21 tháng 4 2017

\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)

\(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)

\(\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)

\(2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{2010}{2012}\)

\(2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{\left(x+1\right)}\right)=\dfrac{2010}{2012}\)

\(2\left(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}\right)=\dfrac{2010}{2012}\)

\(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}=\dfrac{2010}{2012}:2\)

\(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}=\dfrac{1005}{2012}\)

\(\Rightarrow\dfrac{1}{\left(x+1\right)}=\dfrac{1}{4}-\dfrac{1005}{2012}\)

\(\dfrac{1}{\left(x+1\right)}=\dfrac{-251}{1006}\)

\(\Rightarrow1:\left(x+1\right)=\dfrac{-251}{1006}\)

\(\left(x+1\right)=1:\dfrac{-251}{1006}\)

\(x+1=\dfrac{-1006}{251}\)

\(x=\dfrac{-1006}{251}-1\)

\(x=\dfrac{-1257}{251}\)

Nếu bạn tìm \(x\in Z\) hay \(x\in N\) thì \(x=\varnothing\) (không có x thoả mãn)

21 tháng 4 2017

Cảm ơn nha