\(\Delta\) BFC cân tại B. FE \(\perp\) BC tại E; CA 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

Xét\(\Delta BEF(\widehat{E}=90^0)\)và \(\Delta BAC(\widehat{A}=90^0)\)ta có:

\(\Delta BEF=\Delta BAC\hept{\begin{cases}\widehat{B}\\BF=BC\end{cases}}\)(cạnh huyền-góc nhọn)

28 tháng 3 2020

b) \(FE\perp BC;CA\perp BF\)

FE và CA giao nhau tại D => D là trực tâm của tam giác

\(\Rightarrow BD\perp FC\)

Mà BFC là tam giác cân => BD là tia phân giác \(\widehat{ABC}\)

A B C D E M N 1 1 2 2 3 3

Bài làm

a) Vì tam giác ABC cân tại A

=> Góc ABC = góc ACB ( 2 góc ở đáy )

Xét tam giác ABC ta có:

A + ABC + ACB = 180o ( Định lí tổng ba góc trong tam giác )

hay ABC + ACB = 180- A

=> 2ABC = 180o - A      ( 1 )   

Ta có: AB + BD = AD 

           AC + CE = AE

Mà AB = AC ( giả thiết ) 

      BD = CE ( giả thiết )

=> AD = AE

=> Tam giác ADE cân tại A

=> Góc D = góc E

Xét tam giác ADE 

Ta có: A + D + E = 180o 

hay D + E = 180o - A

=> 2D = 180o - A       ( 2 ) 

Từ ( 1 ) và( 2 ) => 2D = 2ABC 

                     => D = ABC

Mà góc D và góc ABC ở vị trí đồng vị

=> DE // BC ( đpcm )

b) Ta có: B1 = B2 ( 2 góc đối đỉnh )

               C1 = C2 ( 2 góc đối đỉnh )

Mà B1 = C1 ( tam giác ABC cân tại A )

=> B2 = C2

Xét tam giác MBD và tam giác NCE

có: Góc BMD = góc CNE = 90o 

cạnh huyền: BD = CE ( giả thiết )

Góc nhọn: B2 = C2 ( chứng minh trên )

=> Tam gíc MBD = tam giác NCE ( cạnh huyền - Góc nhọn )

=> MB = NC. ( 2 cạnh tương ứng )

Ta có: MB + BC = MC

           NC + BC = NB

Mà MB = NC ( chứng minh trên )

Cạnh BC chung

=> MC = NB

Xét tam giác ACM và tam giác ABN 

Có: AB = AC ( giả thiết )

       B1 = C1 ( Tam giác ABC cân tại A )

       MC = NB ( chứng minh trên )

=> Tam giác ACM = tam giác ABN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

=> Tam giác AMN cân tại A ( đpcm )

~ Còn câu c. mỏi tay quá, đợi mik tị, mik làm nốt cho, toán hình là sở trường của mik. ~

16 tháng 2 2019

a) Vì AB=AC mà BD=CE 

Suy ra :  AB+BD=AC+CE

Suy ra             AD= AE

Suy ra          tam giác DAE cân tại A

Suy ra           \(\widehat{\widehat{ADE}=_{ }\frac{180^0-\widehat{BAC}}{2}\left(1\right)}\)

Ta có          tam giác ABC cân tại A

suy ra          \(\widehat{\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\left(2\right)}\)

Từ (!) và (2) suy ra \(\widehat{ADE=\widehat{ABC}}\)

mà hai góc ở vị trí đồng vị .  Suy ra  \(DE//BC\)

25 tháng 3 2019

Bạn tự vẽ hình nha

a) Ta có:\(AK\perp HC\\ EH\perp HC\Rightarrow AK//EH\)

nên  \(\widehat{BEA}=\widehat{KAC}\)(2 góc đồng vị)

Mà \(\widehat{BAE}=\widehat{CKA}\left(=90^0\right)\)

\(\Rightarrow\widehat{EBA}=\widehat{ACK}\)

b)Xét \(\Delta\)IBA và \(\Delta\)KCA có:\(\hept{\begin{cases}\widehat{IBA}=\widehat{KCA}\left(cmt\right)\\\widehat{BAE}=\widehat{CKA}=90^0\\AB=AC\left(gt\right)\end{cases}}\)

Suy ra đpcm

c) Theo b ta có được IA =AK

mà \(\widehat{HIA}=\widehat{IHK}=\widehat{HKA}=90^0\)

nên IHKA là hình vuông

nên HA là phân giác IHK (tính chất nha)

hay HA là phân giác EHC

18 tháng 12 2018

botay.com.vn

18 tháng 12 2018

hình Imgur: Sự kỳ diệu của Internet : https://imgur.com/a/OpRrWs8

a) nhìn hình cũng đủ thấy \(\Delta ABC>\Delta ACH\)

hai tam giác không tương ứng 

\(\Delta ACH=\frac{1}{2}\Delta ABC\)

thực chất mình cũng không biết cách cm nó k bằng nhau :3 

b) Vì H là tia phân giác của \(\widehat{BAC}\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)

\(\widehat{H_1}=\widehat{H_2}\)( 2 góc kề bù mà H là tia phân giác )

\(\Rightarrow\widehat{H_1}+\widehat{H_2}=180^o\)

\(\Rightarrow2H_1=\frac{180^o}{2}=90^o\)

\(\Rightarrow AH\perp BC\)(1)

c) gọi I là trung điểm của cạnh DE

cm giống như trên 

\(\Rightarrow AI\perp DE\)(2)

Từ (1) và (2) ta có :

\(\Rightarrow\hept{\begin{cases}AH\perp BC\\AI\perp DE\end{cases}}\)

=> DE // BC
\(I\in AH\)nên vẫn có thể cm theo kiểu đó maybe ....

không chắc đâu:)

a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có

BM chung

\(\widehat{ABM}=\widehat{HBM}\)

Do đó: ΔABM=ΔHBM

b: Ta có: BA=BH

MA=MH

Do đó: BM là đường trung trực của AH

30 tháng 12 2017

Hình bạn tự vẽ nha!

Ta có:

AH_|_BC(AH là đường cao tam giác ABC)

DK_|_BC(DK là đường trung trực của BC)

=>AH//DK(t/c đường thẳng song song)

=>góc AED=góc EDK(so le trong) (1)

=>góc BEH=góc EDK( 2 góc đồng vị) (2)

Từ (1),(2) suy ra:

góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)

Mặt khác:

Xét tam giác BKD và tam giác DKC,có:

DK cạnh chung

BK=KC( K là trung điểm của BC)

góc BKD=góc DKC=1 vuông

=> tam giác BKD=tam giác DKC(c.g.c)

=>BD=DC

=>tam giác BDC cân tại D 

Nên góc BDK=góc CDK(t/c tam giác cân) (3)

Lại do: AH//DK

=>góc CDK=góc DAH( 2 góc đồng vị) (4)

Từ (3),(4)=>góc BDK=góc DAH

Mà góc AED=góc BDK( so le trong)

E là giao điểm của BD và AH(gt)

Nên E nằm giữa BD và AH

=>góc DAE=góc DAH=góc AED

=>tam giác ADE cân tại D ( đpcm)

a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có

BM chung

\(\widehat{ABM}=\widehat{HBM}\)

Do đó: ΔBAM=ΔBHM

b: Tacó: BA=BH

MA=MH

Do đó: BM là đừog trung trực của AH