Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B C I H D K E F
a) Ta thấy \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widebat{BD}=\widebat{DC}\)
\(\Rightarrow\widehat{HAI}=\widehat{CKD}\) (Hai góc nội tiếp chắn hai cùng bằng nhau)
Do DK là đường kính nên \(\widehat{KCD}=90^o\)
Suy ra \(\Delta AHI\sim\Delta KCD\left(g-g\right)\)
b) Ta thấy \(\widehat{BID}=\widehat{ABI}+\widehat{BAD}\) (Tính chất góc ngoài)
Mà \(\widehat{ABI}=\widehat{IBC};\widehat{BAD}=\widehat{DBC}\) nên \(\widehat{BID}=\widehat{IBC}+\widehat{CBD}=\widehat{IBD}\)
Suy ra DB = DI
Lại có \(\widehat{BAD}=\widehat{CAD}\Rightarrow BD=DC\)
Nên DI = DB = DC
c) Kéo dài OI, cắt đường tròn (O) tại hai điểm E và F.
Ta có ngay \(\Delta EAI\sim\Delta DFI\left(g-g\right)\Rightarrow\frac{IA}{IF}=\frac{IE}{ID}\Rightarrow IA.ID=IE.IF\)
\(=\left(OE-OI\right)\left(OI+OF\right)=R^2-d^2\)
d) Ta có : \(\Delta AHI\sim\Delta KCD\left(cma\right)\Rightarrow\frac{IA}{KD}=\frac{HI}{CD}\Rightarrow IA.CD=KD.HI\)
\(\Rightarrow IA.ID=2OD.HI=2Rr\)
Từ câu c suy ra \(2Rr=R^2-d^2\Leftrightarrow d^2=R^2-2Rr\)
Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [O, C] Đoạn thẳng p: Đoạn thẳng [F, C] Đoạn thẳng q: Đoạn thẳng [C, H] Đoạn thẳng r: Đoạn thẳng [B, E] Đoạn thẳng s: Đoạn thẳng [C, E] Đoạn thẳng t: Đoạn thẳng [A, F] O = (1.42, 2.28) O = (1.42, 2.28) O = (1.42, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l
a) Ta thấy \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn AB. Vậy nên \(\widehat{ACB}=\frac{sđ\widebat{AB}}{2}=\frac{180^o}{2}=90^o\)
Vậy tam giác ABC là tam giác vuông tại C.
b) Do M là trung điểm của dây cung AC. Theo tính chất đường kính, dây cung, ta có \(OM\perp AC\)
Xét tứ giác OMCH có \(\widehat{OMC}=\widehat{OHC}=90^o\) nên OMCH là tứ giác nội tiếp.
Đường tròn ngoại tiếp tứ giác trên có đường kinh là OC nên tâm I của đường tròn là trung điểm OC.
c) Xét tam giác vuông ABE có đường cao BC. Áp dụng hệ thức lượng trong tam giác ta có:
\(EC.EA=BE^2\)
Xét tam giác vuông BCE, theo định lý Pi-ta-go, ta có:
\(BE^2=OE^2-OB^2=OE^2-R^2\)
Vậy ta có ngay \(EC.EA=OE^2-R^2\)
d) Ta thấy CH // BE nên áp dụng định lý Talet ta có:
\(\frac{NH}{BF}=\frac{NC}{FE}\left(=\frac{AH}{AB}\right)\)
Lại có NH = HC nên BF = FE
Xét tam giác vuông BCE có CF là trung tuyến ứng vớ cạnh huyền nên FC = FB.
Vậy thì \(\Delta OCF=\Delta OBF\left(c-c-c\right)\Rightarrow\widehat{OCF}=\widehat{OBF}=90^o\)
hay CF là tiếp tuyến của đường tròn (I)
A B M C O O 1 2 O I E D N
a) Có ^AO1O2 = ^AO1M/2 = 1/2.Sđ(AM của (O1) = ^ABM = ^ABC. Tương tự ^AO2O1 = ^ACB
Suy ra \(\Delta\)AO1O2 ~ \(\Delta\)ABC (g.g) (đpcm).
b) Từ câu a ta có \(\Delta\)AO1O2 ~ \(\Delta\)ABC. Hai tam giác này có đường trung tuyến tương ứng AO,AI
Khi đó \(\Delta\)AOO1 ~ \(\Delta\)AIB (c.g.c) => \(\frac{AO}{AO_1}=\frac{AI}{AB}\). Đồng thời ^OAI = ^O1AB
=> \(\Delta\)AOI ~ \(\Delta\)AO1B (c.g.c). Mà \(\Delta\)AO1B cân tại O1 nên \(\Delta\)AOI cân tại O (đpcm).
c) Xét đường tròn (O1): ^DAM nội tiếp, ^DAM = 900 => DM là đường kính của (O1)
=> ^DBM = 900 => DB vuông góc với BC. Tương tự EC vuông góc với BC
Do vậy BD // MN // CE. Bằng hệ quả ĐL Thales, dễ suy ra \(\frac{ND}{NE}=\frac{MB}{MC}\)(1)
Áp dụng ĐL đường phân giác trong tam giác ta có \(\frac{MB}{MC}=\frac{AB}{AC}\)(2)
Từ (1) và (2) suy ra \(\frac{ND}{NE}=\frac{AB}{AC}\)=> ND.AC = NE.AB (đpcm).
a) Ta thấy CA, CE là hai tiếp tuyến của đường tròn tâm O nên theo tính chất hai tiếp tuyến cắt nhau ta có:
\(\widehat{COA}=\widehat{COE}\)
Tương tự \(\widehat{DOE}=\widehat{DOB}\)
Suy ra \(\widehat{DOE}+\widehat{COE}=\widehat{DOB}+\widehat{COA}\Rightarrow\widehat{COD}=\widehat{DOB}+\widehat{COA}\)
Mà \(\widehat{DOB}+\widehat{COA}+\widehat{COD}=180^o\Rightarrow\widehat{COD}=90^o\)
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có \(OC\perp AE\)
\(\Rightarrow\widehat{OAE}=\widehat{ACO}\) (Cùng phụ với góc AOC)
Mà \(\widehat{ACO}=\widehat{ECO}\Rightarrow\widehat{COD}=\widehat{EAB}\)
Vậy thì \(\Delta AEB\sim\Delta COD\left(g-g\right)\)
c) Gọi I là trung điểm CD. Xét hình thang ACDB có IO là đường trung bình nên IO // AC//BD
Vậy nên OI vuông góc với AB tại O, hay AB là tiếp tuyến tại O của đường tròn (I, CD/2)