Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Có.\widehat{BAC}=135^0\\ \Rightarrow\widehat{BAX}=180^0-\widehat{BAC}=180^0-135^0=45^0\\ Có.\widehat{BAD}+\widehat{DAC}=\widehat{BAC}=135^0\\ \Rightarrow\widehat{BAD}=45^0\Rightarrow\widehat{BAX}=\widehat{BAD}\\ \Rightarrow AB.là.phân.giác.\widehat{xAD}\)
Áp dụng định lí phân giác
\(\dfrac{AD}{AC}=\dfrac{BD}{BC}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AD=\dfrac{3}{4}AC\)
Áp dụng pytago
\(DC^2=AD^2+AC^2\\ \Rightarrow\left(\dfrac{3}{4}AC\right)^2+AC^{^2}=5\\ \Rightarrow AC=\sqrt{16}=4\left(cm\right)\\ \Rightarrow AD=\dfrac{3}{4}.4=3\left(cm\right)\)
a:
Sửa đề tam giác DEC
Xet ΔABC vuông tại A và ΔDEC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDEC
b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)
=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)
\(AC=AD+DC=4+5=9\)
Ta có: \(AC^2=BC^2-AB^2\)
\(\to BC^2-AB^2=81\)
\(BD\) là đường phân giác \(\widehat{B}\)
\(\to\dfrac{BA}{AD}=\dfrac{BC}{DC}\)
\(\to\dfrac{BA}{4}=\dfrac{BC}{5}\)
\(\to\dfrac{BA^2}{16}=\dfrac{BC^2}{25}=\dfrac{BC^2-BA^2}{25-16}=\dfrac{81}{9}=9\)
\(\to\begin{cases}BA^2=144\\BC^2=225\end{cases}\)
\(\to\begin{cases}BA=12\\BC=15\end{cases}\)
Vậy \(BA=12cm, Bc=15cm\)
Xét \(\Delta ABC\) Và \(\Delta DEC\) có :
\(\widehat{BAC}\)\(=\widehat{E\text{D}C}\) ( cùng = 900 )
\(\widehat{C}\) là góc chung
\(\Rightarrow\)\(\Delta ABC\) ~ \(\Delta DEC\) ( g-g )
Áp dụng định lí pi - ta - go vào \(\Delta ABC\)vuông tại A ta được :
\(BC^2\)= \(AB^2\)\(+\)\(AC^2\)
\(BC^2\)= 32 + 52
\(BC^2\)= 9 + 25
\(BC^2\)= 34
\(BC=\sqrt{34}\)
Xét \(\Delta ABC\) có AD là đường phân giác \(\widehat{BAC}\)
\(\Rightarrow\frac{B\text{D}}{C\text{D}}=\frac{AB}{AC}\)\(\Rightarrow\frac{B\text{D}}{BC-B\text{D}}=\frac{3}{5}\)\(\Rightarrow\frac{B\text{D}}{\sqrt{34}-B\text{D}}=\frac{3}{5}\)
\(\Rightarrow5BD=3\sqrt{34}-3BD\)\(\Rightarrow3\sqrt{34}-3BD-5BD=0\)
\(\Rightarrow3\sqrt{34}-8BD=0\)\(\Rightarrow B\text{D}=\frac{3\sqrt{34}}{8}\)