K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2019

Gọi thời gian tổ 1 và tổ 2 làm một mình xong việc lần lượt là x, y (giờ)

ĐK: x, y > 8

Một giờ tổ 1 làm được \(\dfrac{1}{x}\)công việc

Một giờ tổ 2 làm được \(\dfrac{1}{y}\) công việc

Một giờ cà hai tổ làm được \(\dfrac{1}{8}\) công việc.

Ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\) (1)

Sau 3 giờ làm thì tổ 1 phải đi làm việc khác, tổ 2 tiếp tục làm trong 7 giờ thì còn lại 1/3 công việc nên ta có phương trình:

\(\dfrac{3}{x}+\dfrac{7}{y}=1-\dfrac{1}{3}\) \(\Leftrightarrow\) \(\dfrac{3}{x}+\dfrac{7}{y}=\dfrac{2}{3}\)(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{3}{x}+\dfrac{7}{y}=\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{8}\\\dfrac{3}{x}+\dfrac{7}{y}=\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{4}{y}=\dfrac{-7}{24}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{96}{7}\\\dfrac{1}{x}=\dfrac{1}{8}-\dfrac{1}{y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{96}{7}\\\dfrac{1}{x}=\dfrac{5}{96}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{96}{5}\left(TM\right)\\y=\dfrac{96}{7}\left(TM\right)\end{matrix}\right.\)

Vậy, tổ 1 làm một mình trong \(\dfrac{96}{5}\) giờ xong việc, tổ 2 làm một mình trong \(\dfrac{96}{7}\) giờ xong việc.

banhqua

Gọi x(h) là thời gian tổ 1 hoàn thành công việc khi làm một mình

y(h) là thời gian tổ 2 hoàn thành công việc khi làm một mình

(Điều kiện: x>6; y>6)

Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{6}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)

Trong 12 giờ, tổ 1 làm được: \(\dfrac{12}{x}\)(công việc)

Trong 2 giờ, tổ 2 làm được: \(\dfrac{2}{y}\)(công việc)

Theo đề, ta có phương trình: \(\dfrac{12}{x}+\dfrac{2}{y}=1\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}+\dfrac{12}{y}=2\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10}{y}=1\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=10\\\dfrac{1}{x}+\dfrac{1}{10}=\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{15}\\y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=10\end{matrix}\right.\)(thỏa ĐK)

Vậy: Tổ 1 cần 15 giờ để hoàn thành công việc khi làm một mình

Tổ 2 cần 10 giờ để hoàn thành công việc khi làm một mình

12 tháng 3 2020

em đéo biết

26 tháng 2 2017

dễ mà bạn

NV
8 tháng 1 2023

Gọi thời gian làm riêng xong việc của tổ 1 là x>0 (giờ) và tổ 2 là y>0 giờ

Trong 1 giờ hai tổ lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc

Do 2 tổ làm chung trong 8 giờ thì hoàn thành nên: \(8\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)

Hai đội làm việc chung trong 6h và đội 1 làm việc 1 mình thêm 6h thì hoàn thành nên:

\(6\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+6.\dfrac{1}{x}=1\) \(\Leftrightarrow\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)

Ta được hệ pt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=24\\y=12\end{matrix}\right.\)

Gọi x(h) là thời gian tổ 1 hoàn thành công việc khi làm một mình

Gọi y(h) là thời gian tổ 2 hoàn thành công việc khi làm một mình

(Điều kiện: x>8; y>8)

Trong 1 giờ, đội 1 làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, đội 2 làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai đội làm được: \(\dfrac{1}{8}\)(công việc)

Do đó, ta có phương trình \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\)(1)

Trong 3 giờ, tổ 1 làm được: \(\dfrac{3}{x}\)(công việc)

Trong 10 giờ, tổ 2 làm được: \(\dfrac{10}{y}\)(công việc)

Theo đề, ta có phương trình: \(\dfrac{3}{x}+\dfrac{10}{y}=\dfrac{2}{3}\)(2)

Từ (1) và (2) ta lập được hệ phương trình: 

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{3}{x}+\dfrac{10}{y}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{8}\\\dfrac{3}{x}+\dfrac{10}{y}=\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=\dfrac{-7}{24}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=24\\\dfrac{1}{x}+\dfrac{1}{24}=\dfrac{1}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{12}\\y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=24\end{matrix}\right.\)(thỏa ĐK)

Vậy: Tổ 1 cần 12 giờ để hoàn thành công việc khi làm một mình

Tổ 2 cần 24 giờ để hoàn thành công việc khi làm một mình

DD
27 tháng 1 2021

Gọi số giờ nếu làm riêng thì mỗi đội phải làm lần lượt là \(a,b\)(giờ) (\(a,b>0\)).

Mỗi giờ hai đội lần lượt làm được số phần công việc là: \(\frac{1}{a},\frac{1}{b}\)(phần).

Theo bài ta ta có hệ phương trình: 

\(\hept{\begin{cases}6\left(\frac{1}{a}+\frac{1}{b}\right)=1\\2\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{10}{a}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{15}\\\frac{1}{b}=\frac{1}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=15\\b=10\end{cases}}\)(thỏa) 

4 tháng 2 2021

Gọi x là lượng công việc mà tổ (I) làm trong 1hy là lượng công việc mà tổ (II) làm trong 1h

Mà tổ (I) và (II) cùng làm với nhau trong 12h thì xong 11 công việc nên ta có phương trình:

12(x+y)=112(x+y)=1  (1)

Mặt khác 2 tổ cùng làm trong 4h thì tổ (I) đi làm việc khác và tổ (II) làm nốt trong 10h nữa thì xong công việc nên ta có phương trình:

4(x+y)+10y=14(x+y)+10y=1  (2)

Kết hợp phương trình (1) và phương trình (2) ta có hệ phương trình:

12(x+y)=1

4(x+y)+10y=1

 

Giải HPT ta được x=1/ 60 và y=1/15

⇒⇒  Tổ (I) làm một mình trong 60h thì xong công việc.

Tổ (II) làm một mình trong 15h thì xong công việc.

Bn tham khảo nha

Gọi a(giờ) và b(giờ) lần lượt là thời gian tổ 1 và tổ 2 hoàn thành công việc khi làm riêng(Điều kiện: a>12; b>12)

Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{a}\)(công việc)

Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{b}\)(công việc)

Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\)(1)

Vì khi 2 tổ cùng làm trong 4 giờ thì tổ 1 được điều đi làm việc khác và tổ 2 làm nốt trong 10 giờ thì xong công việc nên ta có phương trình:

\(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{10}{b}=1\)

\(\Leftrightarrow\dfrac{4}{a}+\dfrac{14}{b}=1\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+\dfrac{4}{b}=\dfrac{1}{3}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-10}{b}=\dfrac{-2}{3}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{-30}{-2}=15\\\dfrac{1}{a}+\dfrac{1}{15}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{12}-\dfrac{1}{15}=\dfrac{1}{60}\\b=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=60\\b=15\end{matrix}\right.\)(thỏa ĐK)

Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm riêng

Tổ 2 cần 15 giờ để hoàn thành công việc khi làm riêng