K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

Gọi khối lượng công việc của tổ 1 và 2 làm được trong 1h là a,b(phần công việc).Gọi x là tổng khối lượng của việc cần hoàn thành \(\left(x,a,b>0\right)\)

Theo đề:Để....trong 6h \(\Rightarrow6\left(a+b\right)=x\left(1\right)\)

Sau 2h làm chung...trong 10h \(\Rightarrow2\left(a+b\right)+10a=x\)

\(\Rightarrow6a+6b=2a+2b+10a\Rightarrow4b=6a\Rightarrow\left\{{}\begin{matrix}a=\dfrac{2}{3}b\\b=\dfrac{3}{2}a\end{matrix}\right.\)

Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}6\left(a+\dfrac{3}{2}a\right)=x\\6\left(\dfrac{2}{3}b+b\right)=x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15a=x\\10b=x\end{matrix}\right.\)

\(\Rightarrow\) tổ 1 làm xong trong 15 ngày,tổ 2 làm xong trong 10 ngày

9 tháng 6 2021

Gọi x,y lần lượt là phần công việc tổ 1 và tổ 2 làm đc trong 1h.(x,y>0)

Vì để hoàn thành 1 công việc 2 tổ phải làm trong 6h nên ta có pt:   6x+6y=1  (1)

Vì sau 2h làm chung thì tổ 2 đc điều đi lm việc khác, tổ 1 đã hoàn thành xong công việc còn lại trong 10h nên ta có pt:    2x+2y+10y=1⇔ 12x+2y=1  (2)

Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}6x+6y=1\\12x+2y=1\end{matrix}\right.\)\(\left\{{}\begin{matrix}12x+12y=2\\12x+2y=1\end{matrix}\right.\)

                                    ⇔\(\left\{{}\begin{matrix}6x+6y=1\\10y=1\end{matrix}\right.\)\(\left\{{}\begin{matrix}6x+6.\dfrac{1}{10}=1\\y=\dfrac{1}{10}\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\dfrac{1}{15}\left(nhận\right)\\y=\dfrac{1}{10}\left(nhận\right)\end{matrix}\right.\)

Vậy thời gian tổ 1 làm riêng là: \(1:\dfrac{1}{15}=15\left(h\right)\)

       thời gian tổ 2 làm riêng là:  \(1:\dfrac{1}{10}=10\left(h\right)\)

12 tháng 3 2020

em đéo biết

DD
27 tháng 1 2021

Gọi số giờ nếu làm riêng thì mỗi đội phải làm lần lượt là \(a,b\)(giờ) (\(a,b>0\)).

Mỗi giờ hai đội lần lượt làm được số phần công việc là: \(\frac{1}{a},\frac{1}{b}\)(phần).

Theo bài ta ta có hệ phương trình: 

\(\hept{\begin{cases}6\left(\frac{1}{a}+\frac{1}{b}\right)=1\\2\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{10}{a}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{15}\\\frac{1}{b}=\frac{1}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=15\\b=10\end{cases}}\)(thỏa) 

Gọi x(h) là thời gian tổ 1 hoàn thành công việc khi làm một mình

y(h) là thời gian tổ 2 hoàn thành công việc khi làm một mình

(Điều kiện: x>6; y>6)

Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{6}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)

Trong 12 giờ, tổ 1 làm được: \(\dfrac{12}{x}\)(công việc)

Trong 2 giờ, tổ 2 làm được: \(\dfrac{2}{y}\)(công việc)

Theo đề, ta có phương trình: \(\dfrac{12}{x}+\dfrac{2}{y}=1\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}+\dfrac{12}{y}=2\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10}{y}=1\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=10\\\dfrac{1}{x}+\dfrac{1}{10}=\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{15}\\y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=10\end{matrix}\right.\)(thỏa ĐK)

Vậy: Tổ 1 cần 15 giờ để hoàn thành công việc khi làm một mình

Tổ 2 cần 10 giờ để hoàn thành công việc khi làm một mình

NV
8 tháng 1 2023

Gọi thời gian làm riêng xong việc của tổ 1 là x>0 (giờ) và tổ 2 là y>0 giờ

Trong 1 giờ hai tổ lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc

Do 2 tổ làm chung trong 8 giờ thì hoàn thành nên: \(8\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)

Hai đội làm việc chung trong 6h và đội 1 làm việc 1 mình thêm 6h thì hoàn thành nên:

\(6\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+6.\dfrac{1}{x}=1\) \(\Leftrightarrow\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)

Ta được hệ pt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=24\\y=12\end{matrix}\right.\)

31 tháng 1 2021

Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h)  (ĐK: x, y > 0)

Một giờ tổ 1 làm được: \(\dfrac{1}{x}\) (Công việc)

Một giờ tổ 2 làm được: \(\dfrac{1}{y}\) (Công việc)

Một giờ cả hai tổ làm được: \(\dfrac{1}{12}\) (Công việc)

Vì một giờ cả hai tổ làm được \(\dfrac{1}{12}\) công việc nên ta có pt:

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\) (1)

Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: \(\dfrac{4}{x}\) (Công việc)

Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: \(\dfrac{4}{y}+\dfrac{10}{y}=\dfrac{14}{y}\) (Công việc)

Vì hai tổ làm xong 1 công việc nên ta có pt:

\(\dfrac{4}{x}+\dfrac{14}{y}=1\) (2)

Từ (1) và (2) ta có hpt:

(I) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

Giải hpt:

(I) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{1}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-\dfrac{10}{y}=\dfrac{-2}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}+\dfrac{14}{15}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}=\dfrac{1}{15}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\) (TM)

Vậy tổ 1 làm một mình trong 60h thì xong công việc đó

tổ 2 làm một mình trong 15h thì xong công việc đó

Chúc bn học tốt!

 

31 tháng 1 2021

Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h)  (ĐK: x, y > 0)

Một giờ tổ 1 làm được: 1x (Công việc)

Một giờ tổ 2 làm được: 1y (Công việc)

Một giờ cả hai tổ làm được: 112 (Công việc)

Vì một giờ cả hai tổ làm được 112 công việc nên ta có pt:

1x+1y=112 (1)

Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: 4x (Công việc)

Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: 4y+10y=14y (Công việc)

Vì hai tổ làm xong 1 công việc nên ta có pt:

4x+14y=1 (2)

Từ (1) và (2) ta có hpt:

(I)