Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-16x-15x\left(x-4\right)\)
\(=x\left(x-4\right)\left(x+4\right)-15x\left(x-4\right)\)
\(=\left(x-4\right)\left(x^2+4x-15x\right)\)
\(=\left(x-4\right)\left(x^2-11x\right)=x\left(x-4\right)\left(x-11\right)\)
\(=x\left(x-4\right)\left(x+4\right)-15x\left(x-4\right)\\ =x\left(x-4\right)\left(x-11\right)\)
o: x^4+x^3+x^2-1
=x^3(x+1)+(x-1)(x+1)
=(x+1)(x^3+x-1)
q: \(=\left(x^3-y^3\right)+xy\left(x-y\right)\)
=(x-y)(x^2+xy+y^2)+xy(x-y)
=(x-y)(x^2+2xy+y^2)
=(x-y)(x+y)^2
s: =(2xy)^2-(x^2+y^2-1)^2
=(2xy-x^2-y^2+1)(2xy+x^2+y^2-1)
=[1-(x^2-2xy+y^2]+[(x+y)^2-1]
=(1-x+y)(1+x-y)(x+y-1)(x+y+1)
u: =(x^2-y^2)-4(x+y)
=(x+y)(x-y)-4(x+y)
=(x+y)(x-y-4)
x: =(x^3-y^3)-(3x-3y)
=(x-y)(x^2+xy+y^2)-3(x-y)
=(x-y)(x^2+xy+y^2-3)
z: =3(x-y)+(x^2-2xy+y^2)
=3(x-y)+(x-y)^2
=(x-y)(x-y+3)
o) \(x^4+x^3+x^2-1\)
\(=\left(x^4+x^3\right)+\left(x^2-1\right)\)
\(=x^3\left(x+1\right)+\left(x+1\right)\left(x-1\right)\)
\(=\left(x+1\right)\left(x^3+x-1\right)\)
q) \(x^3+x^2y-xy^2-y^3\)
\(=\left(x^3+x^2y\right)-\left(xy^2+y^3\right)\)
\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2\left(x-y\right)\)
s) \(4x^2y^2-\left(x^2+y^2-1\right)^2\)
\(=\left(2xy\right)^2-\left(x^2+y^2-1\right)^2\)
\(=\left(2xy-x^2-y^2+1\right)\left(2xy+x^2+y^2-1\right)\)
\(=-\left(x^2-2xy+y^2-1\right)\left(x^2+2xy+y^2-1\right)\)
\(=-\left(x-y-1\right)\left(x-y+1\right)\left(x+y+1\right)\left(x+y-1\right)\)
u) \(x^2-y^2-4x-4y\)
\(=\left(x^2-y^2\right)-\left(4x+4y\right)\)
\(=\left(x+y\right)\left(x-y\right)-4\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-4\right)\)
x) \(x^3-y^3-3x+3y\)
\(=\left(x^3-y^3\right)-\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2-3\right)\)
z) \(3x-3y+x^2-2xy+y^2\)
\(=\left(3x-3y\right)+\left(x^2-2xy+y^2\right)\)
\(=3\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3+x-y\right)\)
https://sites.google.com/site/hoctoantuoitho/toancap2/phanhdt
\(=\left(3x+1\right)^3+\dfrac{1}{3}\left(3x+1\right)=\left(3x+1\right)\left(9x^2+6x+1+\dfrac{1}{3}\right)\\ =\left(3x+1\right)\left(9x^2+6x+\dfrac{4}{3}\right)\)
x2-8x-15=x2-8x+16-31=(x-4)2-31=\(\left(x-4-\sqrt{31}\right).\left(x-4+\sqrt{31}\right)\)
a) \(x^3-16x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)
b) \(3x^2+3y^2-6xy-12=3\left(x^2-2xy+y^2-4\right)=3\left(x-y-2\right)\left(x-y+2\right)\)
c) \(x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
d) \(x^4+x^3+2x^2+x+1=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2+1\right)\)
Dùng hằng đẳng thức số 3 nhé bạn: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(4x^3-36x=4x\left(x^2-9\right)=4x\left(x^2-3^2\right)=4x\left(x-3\right)\left(x+3\right)\)
Tức là không thể biến cái (x2 - 32) thành (x - 3)2 đúng không ạ?
Lời giải:
1. \(10x^2y-15x^3=5x^2(2y-3x)\)
2. \(3x^2-6x^2y+3x^2z=3x^2(1-2y+z)\)
3. \(2x^2y-4xy^2+xy-2y^2=(2x^2y-4xy^2)+(xy-2y^2)\)
$=2xy(x-2y)+y(x-2y)=(x-2y)(2xy+y)=y(x-2y)(2x+1)$
4. $4-x^2+4xy-y^2$ không phân tích được thành nhân tử.
5. $9x^2-1+6xy+3y$ không phân tích được thành nhân tử.
Em cảm ơn ạ 💞