Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ADB\) và \(\Delta AEC\) co:
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(\widehat{A}\) CHUNG
Suy ra: \(\Delta ADB~\Delta AEC\)
b) Xét \(\Delta EHB\) và \(\Delta DHC\) có:
\(\widehat{HEB}=\widehat{HDC}=90^0\)
\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
suy ra: \(\Delta EHB~\Delta DHC\)
\(\Rightarrow\)\(\frac{EH}{DH}=\frac{HB}{HC}\)
\(\Rightarrow\)\(HB.DH=HC.HE\)
a, theo định lý pitago tính đc BC
sau đó xét tam giác đồng dạng ABH và CBA là tìm đc AH
hok tốt
a. -△AEC và △ADB có: \(\widehat{AEC}=\widehat{ADB}=90^0;\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AEC∼△ADB (g-g).
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AD.AC\).
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AD}{AB}\)
b. -△ADE và △ABC có: \(\dfrac{AE}{AC}=\dfrac{AD}{AB};\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△ADE∼△ABC (g-g).
c. -△AEC vuông tại E có: \(\widehat{EAC}=60^0\Rightarrow AE=\dfrac{AC}{2}\)
-△ADE∼△ABC \(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AE}{AC}\right)^2=\dfrac{1}{4}\)
\(\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}=\dfrac{1}{4}.120=30\left(cm^2\right)\)
C/m \(AE=\dfrac{AC}{2}\):
-Lấy M là trung điểm BC.
-△AEC vuông tại E có: EM là trung tuyến.
\(\Rightarrow AM=EM=\dfrac{1}{2}AC\)
\(\Rightarrow\)△AEM cân tại M mà \(\widehat{EAM}=60^0\).
\(\Rightarrow\)△AEM đều \(\Rightarrow AE=AM=\dfrac{AC}{2}\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE;AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a) xét tam giác AEC và tam giác ADB có:
\(\widehat{AEC}=\widehat{ADB}=90^o;\widehat{A}:chung\)
nên tam giác ADB đồng dạng với tam giác AEC(g-g)
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AD}{AB}\)\(\Rightarrow AE.AB=AC.AD\)
b) xét tam giác AED và tam giác ACB có:
\(\dfrac{AE}{AC}=\dfrac{AD}{AB}\left(cmt\right)\) và \(\widehat{A}:chung\)
nên tam giác ADE đồng dạng với tam giác ABC(c-g-c)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\)(2 góc tương ứng)
c) ta có FE//BD(\(\perp AC\))
áp dụng ĐL ta . lét vào tam giác ABD, ta được:
\(\dfrac{AE}{BE}=\dfrac{FA}{FD}\)hay \(AE.DF=AF.BE\)(đpcm)